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Abstract—Among many current data processing systems, the
objectives are often not the reproduction of data, but to compute
some answers based on the data responding to some queries. The
similarity identification task is to identify the items in a database
which are similar to a given query item regarding to a certain
metric. The problem of compression for similarity identification
has been studied in [1]. Unlike classic compression problems,
the focus is not on reconstructing the original data. Instead, the
compression rate is determined by the desired reliability of the
answers. Specifically, the information measure identification rate
of a compression scheme characterizes the minimum compression
rate that can be achieved which guarantees reliable answers with
respect to a given similarity threshold. In this paper, we study
the component-based quadratic similarity identification for cor-
related sources. The blocks are first decorrelated by Karhunen-
Loeve transform. Then, the decorrelated data is processed by
a distinct D-admissible system for each component. We derive
the identification rate of component-based scheme for block-
correlated Gaussian sources. In addition, we characterize the
identification rate of a special setting where any information
regarding to the component similarity thresholds is unknown
while only the similarity threshold of the whole scheme is given.
Furthermore, we prove that block-correlated Gaussian sources
are the ""most difficult" to code under the special setting.

I. INTRODUCTION

The problem of efficient identification and data retrieval
from large databases has become more relevant in recent years.
Similarity identification requires that a database returns all the
data items which are similar to a given query as defined by a
similarity threshold. The notion of similarity is often defined
by a specific metric measure, such as the Euclidean distance
or the Hamming distance. It is required that false negative
errors are not permitted in the retrieval process, since they
cannot be detected by further processing. This is important
for some applications, such as security cameras and criminal
forensic databases. On the other hand, although false positive
errors can be detected by further verification, they increase
the computational cost on the server side, and hence, reduce
efficiency. Therefore, the tradeoff between the compression
rate and the reliability of the answers to a given query is of
interest.

The problem of similarity identification of compressed
data was first studied in [2] from an information-theoretic
viewpoint. In this work, both false positive and false negative
errors are allowed, as long as the error probability vanishes
with the data block-length. Our setting though is closely

related to the problem of compression for similarity queries as
introduced in [3], [4]. In [3], [4] and this work, false negative
errors are not permitted. [3], [4] study the problem from
an information-theoretic viewpoint and introduce the term
identification rate. It characterizes the minimum compres-
sion rate that permits query answers with a vanishing false
positive probability, while false negative errors are not allowed.
[3], [4] provide the identification rate for Gaussian sources
with quadratic distortion and for binary sources with Hamming
distance. [3] also proves that, as with classical compression,
the Gaussian source requires the largest compression rate
among sources with a given variance.

Since most real-world data is correlated, it is of interest
to investigate similarity identification schemes for correlated
sources. [5] uses lossy compression as a building block to
construct the TC-A (Type Covering signatures and triangle-
inequality decision rule) and LC-A (Lossy Compression sig-
natures and triangle-inequality decision rule) schemes. The
results in [5] show that the compression rate of TC-A can
achieve the identification rate for the binary-Hamming case.
In [6], the authors present a shape-gain quantizer for i.i.d.
Gaussian sequences: Scalar quantization is applied to the mag-
nitude of the data vector. The shape (the projection on the unit
sphere) is quantized using a warpped spherical code [7]. [8]
proposes tree-structured vector quantizers that hierarchically
cluster the data using k-center clustering. In [9], the authors
compare two transform based similarity identification schemes
to cope with exponentially growing codebooks for high-
dimensional data. One of the proposed schemes, that is, the
component-based approach, shows both good performance and
low search complexity. However, for correlated sources, no
analytical results for the identification rate of above schemes
are provided.

The outline of this paper is as follows: In Section 2, we give
a brief description of the problem’s background and key con-
cepts ! for more detailed background and problem description.
In Section 3, we discuss component-based approaches. We first
derive the identification rate of component-based approaches
for block-correlated Gaussian sources. Then, we characterize
the identification rate for a special setting and show that the
block-correlated Gaussian sources are the "most difficult” to

IWe follow the problem setup and adopt most notations in [3] and [4].
Therefore, we refer to [3] and [4]



code. The conclusions are given in Section 4.

The notational conventions in this work are as follows.
Uppercase nonboldface symbols such as X are used to denote
random variables; and lowercase nonboldface symbols such as
x are used to denote sample values of those random variables.
Vectors and matrices of random variables or their sample
values are denoted by boldface symbols. For example, X and
X are vectors (or sometimes matrices from the context) of
random variables X and its sample values x, respectively.
The ith entry of a vector X is denoted by X;.

II. QUADRATIC SIMILARITY QUERIES

Let y = (y1,¥2,..,yn)" denote the query sequence and
x = (x1,22,..,2,)7 as the data sequence. A rate-Rp iden-
tification system (7', g) consists of a signature assignment
function: T : R™ — {1,2,---,2"fn} and a query function
g:{1,2,--.  2nFp} xR — Ino, maybe}. The database keeps
only a short signature 7'(x) for each x. And the output
decision no or maybe of a query function indicates whether x
and y are probably Djp-similar or not. The sequences x and
y are called Dip-similar if d(x,y) < Dip, where

1 n
i=1

p is an arbitrary per-letter distance measure, and Dyp is the
similarity threshold. Specifically, the quadratic similarity is

1 n
n Z i — will?,
i=1

where || - || is the standard Euclidean norm.

A similarity query retrieves all data items that are Dip-
similar. A scheme is called Dip-admissible if we obtain
g(T(x),y) = maybe for any pair of data item and query (X,y)
which is Dip-similar.

Now, consider a probabilistic model for database and query.
The objective is to design Dip—admissible systems that mini-
mize the probability of the output maybe for given distributions
of database vectors X and query vectors Y. According to [3],
for a Dip—admissible system, this probability is calculated as

Pr{g(T(X),Y) = maybe}
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— Pr {g(T(X),Y) = maybe|d(X, Y) < Dip}
Pr{d(X,Y) < Dp} 3)
+ Pr{g(T(X),Y) = maybe,d(X,Y) > Dp}
=Pr{d(X,Y) < Dpp} + Pr(e),
where the second equality follows from
Pr{g(T(X),Y) = maybe|d(X,Y) < Dp} = 1 by the

requirement of Djp admissibility. Hence, minimizing (3) is
equivalent to minimizing the probability of false positives
Pr(e). That is, the probability Pr{¢g(7(X),Y) = maybe}
can be used as a performance measure for the investigated
schemes. In the following, we wuse the abbreviation
Pr{maybe} for the probability that a system outputs
maybe.

For given distributions Px and Py and a similarity thresh-
old Dip, a rate R is said to be Dip-achievable if there exits

a sequence of Dip-admissible schemes (7", g(™)) that can
achieve a vanishing Pr{maybe} as n approaches infinity:

lim Pr{g™ (T (X),Y) = maybe} = 0. “4)
n— 00

The identification rate Ry, of the source is defined as the
infimum of all Dip-achievable rates.

III. IDENTIFICATION RATES OF DEPENDENT
NORMALLY-DISTRIBUTED VARIABLES

A. Component-based Approach

Consider a concatenation of N independent blocks of corre-
lated zero-mean Gaussian random variables with blocklength
M for Dip-similarity identification, where n = M N is the
length of the source sequence. The blocks can be decorrelated
by the KLT. For each m € {1,2,..., M}, we first collect
the m-th elements of all N blocks and arrange them into
M separate subsequences with subsequence length V. The
subsequences can be represented by an M x N matrix Xp,
where each row represents one subsequence. Let Xg =~ =
%E[X pXT] be the covariance matrix of Xp. Let ® be the
eigenmatrix of ZXD’ EXD(I) = ®A, where A is a diagonal
matrix with eigenvalues \; as diagonal entries. Since the
covariance matrix is real symmetric, then its eigenvectors are
orthonormal, ®7® = I. Hence, the KLT uses the transpose of
the eigenmatrix ¢ of X  to decorrelate the data:

%E[@TXD@TXD)T] =0TNg & =A (5)

Since uncorrelated jointly distributed Gaussian random vari-
ables imply independence, the KLT outputs M independent
subsequences consisting of i.i.d. Gaussian variables with cor-
responding variances. We use a Dl%n )_admissible system for
the m-th row of the data matrix after the KLT Xp = dTX D.
We call it the m-th component, and DI(SL ) is the similarity
threshold for the m-th component.

The query Y has the same distribution as the database
vectors X. Hence we can use the same KLT to decorrelate
the query. The m-th component scheme answers maybe if the
transformed m-th query-database pair (x("”),y(m)) satisfies
& Ty e =™ < D,

We define the achievable rate of the component-based
scheme as the average of the component rates RI(];" ), Le.,
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The similarity threshold for a component-based scheme is
defined as the upper bound
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Note, the eigenbasis of the KLT is orthonormal and the
distances in the component space are preserved.
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B. Identification Rate R$y

We define the identification rate of a component-based
scheme RI%* as the infimum of all Djp-achievable rates which
can be achieved by a component-based approach as defined
above. The identification rate R for correlated Gaussian

sources is given in Theorem 1.

Theorem 1. Consider correlated Gaussian sources that are
decorrelated by a KLT with component variances o3 > --- >
o3;. An M-component scheme with DI(D )_admissible systems
for each component m and logic AND decision for the final
output, can achieve the identification rate

2
- m (8)
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Dl(gb) = max (O, 202, —

where

vli(Z)) ©)

with v € {mln (W) ,oo}.

Proof. Each component of a M-component scheme uses a
ng” -admissible system. An overall output of maybe can
only be achieved if all component systems output maybe.
For a given Dyp, the identification rate, i.e., the infimum of
the achievable rate, is obtained if the component similarities
DY DM satist

D - P y

M
: 1 (m) ( (m)
min Rp=— R (D )
D, D@D M mzzl PP
M
1 ) (10)
S.t. M n; DID 2 D[D,

st. DI >o.

Note, all rate similarity functions RI(];”) (DI(];”)) of the com-
ponents are convex and strictly increasing. Hence, we consider
the equivalent problem

min

J=Rp—vDp

amn
st. DY >0,

where v is a positive Lagrangian multiplier. By definition,
similarities are non-negative.

Recall that the identification rate for i.i.d. Gaussian sources
is [4]

log(zi) for 0 < Dpp < 202
Ri»(Dp) = 20%=Dr 12
i (D) {oo for Dip > 202. (12)
The derivative of the cost function J with respect to D( ™
oJ 1
= —v (13)

In(2)(202, — D)
By setting (13) to zero, we obtain that DI(];n ) is determined by
the component variance o2, and the value of v
1

vin(2)’

apim

DI =252 — (14)

In order to satisfy the non-negative constraint of DI(]T ), each
component is only activated when the multiplier v is larger
ctq gy (1)
than its v ;|
my_ 1
min 20_%1 ln( )
Note, the smallest v for the scheme is m
Then, we can sweep over permitted values of the Lagrangian
parameter v € W’ } to obtain the (RS, Dip) curve,

and each component similarity threshold is determined by (9).
O

v> v (15)

The theorem shows that the optimal identification rate can
be achieved by activating the components according to their
variances after the KLT. At the lowest rate, only the component
with the largest variance is activated. In this case, the M-
component scheme uses only one component. Then, as the
rate increases, the remaining components are activated in the
order of their component variances. The activated components
operate according to the Pareto condition.

C. Special Setting

In this section, we discuss the special setting that only
the similarity threshold Dip of an M-component scheme is
given, and any information regarding the component similarity
thresholds Dl(f)” ) is unknown. For this special setting, we first
need to guarantee that the component-based schemes are still
Dip-admissible after applying the transform. This means that
the similarity queries in the transform domain should retrieve
all the true positive data items that should be retrieved in the
original space. Proposition 1 shows the constraints imposed on
Df{f ) of each component to maintain the Dip-admissibility of
the scheme.

Proposition 1. The Djp-admissibility of a M-component
scheme is maintained if each individual component uses an
M Dip-admissible scheme.

Proof. In the original space, a vector X with vector length
n = N M in the database should be labeled as maybe if

1 <1
- Z 7H)~((m) _ S’(m)HZ < Dp (16)
M — N
M 1
> GIE =3P <MD, a7
m=1

Since the orthogonal transform preserves the Euclidean
norm, the Dip constraint is still valid in the transform do-
main. Then, it is easy to see that if one component is with
%Hi(m) —y(™)||2 > M Dyp, then the whole vector x can not
be Dip-similar to the query. Hence, the Dip-similarity of the
M-component scheme requires that every component should
satisfy

l” %(m)
N

~ 5|2 < MDyp = D). (18)

O

We define the identification rate RS as the infimum of Dip-
achievable rates that can be achieved for this special setting.
Equipped with Proposition 1, we give RS in Proposition 2.
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Fig. 1: Component-based approach for similarity identification.

Proposition 2. The RS for correlated Gaussian sources is

ﬁlog% f0r0<DID<*maX( 2)

R% = 2max(agn)
00 for Dip > 2 max(02,).
(19)

Proof. The database vectors x are labeled as maybe if and
only if all its transform components are determined as maybe
with similarity threshold M Dip. Define the event A, =
{d (T, (T (X)), Y™) < MDip}, where Tp,(-) is
the signature function for the m-th component, and where
T, Y (k) = {x : T)n(x) = k} represents the set of vectors
that have the same signature. Since the transform components
of Gaussian sources are independent, we can write Pr{maybe}
for the overall scheme as
M M
Pr{A; N AyN,...,0Ay} = [ Pr{Am} = [] Pm, 20)
m=1 m=1

where P, is Pr{maybe} of the m-th component. Note,
Pr{maybe} converges to 1 if R < Rjp. Hence, we have
P, = 1ifthe component is assigned a rate that is smaller than
its corresponding R\™ (M Dip). The scheme’s Pr{maybe}
(20) is a product of component Pr{maybe}. Therefore, to
make sure Pr{maybe} vanishes, it only requires one of the M
schemes to be assigned a rate slightly over its corresponding
identification rate, R* = R;ém)(MDID) + AR, where AR is
arbitrarily small.

Since Ry, of i.i.d. Gaussian sources increases along with
the ratio of %, we only need the component with the
largest variance to operate with a rate above its corresponding
identification rate. Since the component variances are equal to

their corresponding eigenvalues, then we can write the RS as
(19). O

When compared with R, we can see that RS is optimal
in the lowest rate region when only the component with the
largest eigenvalue is activated.

Finally, we compare RS} with the rate of a scheme without
transform, i.e., ignoring the correlation among the Gaussian
sources with variance o?:

Rip" — R = (21)
1 1 1

= log _ | — log — (22)
M< <1A§5§D> (124%355%1)))
1 0'2 2 max( ) MD[D

= 1 23
M8 (max(af) 202 — M Dpp 23)

In the following, we consider non-Gaussian correlated
sources and derive an upper bound on the identification rate
RSS, achieved by the component-based approach under the
special setting. Moreover, it can be concluded that for all
correlated sources with the same largest component variance,
Gaussian sources require the highest identification rate RS
Proposition 3 below summarizes the result.

Proposition 3. Given a Dip-admissible M-component scheme
where a correlated source is characterized by the largest
finite KLT component variance o* (0% > @ ), then the
rate R} achieved by the component-based approach under
the special setting for this source is bounded from above by

log

MD,D

Proof. According to the Fréchet inequalities, we can write
Pr{maybe} for the overall scheme as

Pr{Ain,...,NAy} < min(Pr(A1), -+ ,Pr(An))

Similar to the proof of Proposition 2, it suffices if we only
require that one component achieves a vanishing Pr{maybe}.
The other components can simply follow a trivial scheme with
rate 0, and always output maybe. Therefore, the identification
rate R;‘ém) of any component is a Dip-achievable rate for the
M-component scheme; and RS for a non-Gaussian source
is the Rj{™ of the component with the largest variance o2
divided by M. Theorem 6 of [10] shows that Gaussian sources
require the largest Rj, among all sources with the same
variance. Hence, if a correlated non-Gaussian source obtains
the largest component variance o2 which is the same as the
largest component variance of a correlated Gaussian sources
after KLT, it follows that the achieved rate R for the non-

(24)

Gaussian source is bounded from above by the RG (19) for
correlated Gaussian sources, i.e., ﬁ log —p- O

==

Example 1. Consider the case of two correlated Gaussian
variables with E[X,] = E[X5] = 0, E[X?] = E[X3] = 02 and
IE[X 1X2] = p, where p is the correlation coefficient. After ap-
plying the Karhunen-Loéve transform, the resulting variances
are E[X?] = 0% = 02(1 + p), E[X3] = 035 = 0*(1 — p) and
E[X1X5] = 0. Therefore, the RS for two correlated Gaussian
random variables is

Llog for 0 < Dpp < 02
RCS _ 3 108 1-2p = Vb 1
ID = o1

00 for Dip > of.

(25)



In Fig. (2), we compare RS for Gaussian sources with differ-
ent correlation coefficients. It can be observed that the scheme
requires higher rates to achieve a vanishing Pr{maybe} as the
data correlation becomes weaker.

o8
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Fig. 2: Comparison of the component-based RSS for Gaussian
sources with different correlation coefficients.

In addition, we consider the special case p = 1, where the
two-dimensional Gaussian vectors are completely determined
by one Gaussian random variable. Hence, Ij, of the complete
correlated sources should be half of the identification rate for
ii.d. random variables. Fig. (3) shows that the RS> achieved
by the scheme is half of the Rj, of i.i.d. Gaussian source.
Therefore, the efficiency of the component-based scheme
depends on the correlation of the data.
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Fig. 3: Comparison of the component-based RS for p = 1
with Ry of i.i.d. Gaussian sources.

Finally, we compare R$S for the special setting with the
optimal R%* for p = 0 and p = 0.7 in Fig. (4). We also add
Rjp of i.i.d. Gaussian sources as a baseline for the comparison.
When p = 0, the input sources are i.i.d. Gaussian. We can
observe that RE* is the same as Rjy. For the component-
based approach, the optimal rate Ry is close to RS in the
low rate region, and RS starts to become suboptimal after
the second component is activated for R{. The reason of the
suboptimality of RS is that the special setting DI%) = 2Dp
is enforced and cannot be optimized according to (10).

IV. CONCLUSIONS

In this work, we derive the identification rate of a
component-based approach for block-correlated Gaussian
sources. We characterize the identification rate for a special
setting of the component-based approach. From the example,

4
C*. _
35F [~ Hip#=0
5 —R%:p=07
RO p=0
w2.5’ ---R::DSZ/J:O] ::
5 2 |ORM
s
15+
; .
05

05 1 15
D/o?

Fig. 4: Comparison of Ry and RSS for p = 0 and p = 0.7.
Ry for i.i.d. Gaussian sources is given for reference.

we show that the identification rate for this special setting
becomes suboptimal after the second component is activated.
Furthermore, we show that block-correlated Gaussian sources
are the "most difficult" to code under the special setting.
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