Infotheory for Statistics and Learning

Lecture 1

Entropy [PW:1],[CT:2,8]

Relative entropy [PW:2], [CT:2]
Mutual information [PW:3], [CT:2]
f-divergence [PW:7]
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Entropy

Over (R, B), consider a discrete RV X with all probability in a
countable set X € B, the alphabet of X

Let px(x) be the pmf of X for x € X
The (Shannon) entropy of X

— ) px(x)logpx(z)

TeX

the logarithm is base-2 if not declared otherwise

sometimes denoted H (px) to emphasize the pmf px

H(X) >0 with = only if px(x) =1 for some z € X

H(X) <log|X| (for |X| < c0) with = only if px(x) = 1/|X]
H(px) is concave in px
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For two discrete RVs X and Y, with alphabets A and ) and a
joint pmf pxy (x,y), we have the joint entropy

H(X,Y)=- Y pxy(z,y)logpxy(z,y)
reX,ye)

Conditional entropy

Extension to > 2 variables straightforward
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Relative Entropy

Assume P and () are two prob. measures over (€2, A)
Emphasize expectation w.r.t. P (or Q) as Ep[-] (or Egl-])
The relative entropy between P and )

D(PQ) = Ep [1og %]

if P < @ and D(P||Q) = oo otherwise
e D(P||Q) >0 with=onlyif P=Qon A
e D(P||Q) is convex in (P,Q), i.e.
DAPI+(1-A) B[ AQ14+(1-A)Q2) < AD(P1[|Q1)+(1-A) D(F[|Q2)

Also known as divergence, or Kullback—Leibler (KL) divergence

D(P||@) is not a metric (why?), but is still generally considered a
measure of “distance” between P and ()
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For discrete RVs: P — px and Q — py,

px ()

py (z)

D(px|lpy) = Z px(x)log

For abs. continuous RVs : P — Px — fx and Q — Py — fy,

fx(x)

og Iy (@) dx

D(Py|Py) = D(fx|lfy) = / fx(@)]

For a discrete RV X (with |X| < c0), note that

H(X) = log X1 = 3t ox i

= H(px) is concave in px, entropy is negative distance to uniform
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Mutual Information

Two variables X and Y with joint distribution Pxy on (R2, B?)
and marginals Px and Py on (R, )

Mutual information
I(X; Y) = D(PXYHPX X Py)

where Px ® Py is the product distribution on (R?, B2)

Discrete:
. _ pXY(xv y)
I(X:y) = xz’y:pxy(ﬂﬁ, y)log px (z)py (v)
Abs. continuous:
. _ fXY(xv y)
16Y) = [ fxv(@)log - L dady
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For discrete RVs, we see that

I(X;Y)=H(X)+HY) - H(X,Y)
= H(X)-HX|Y)=H(Y)-HY|X)

For abs. continuous Px define differential entropy as

h(X) = DY) = = [ Fx(@)log fc(a)dn
where \ is Lebesgue measure on (R, 3), then we get

I(X;Y)=h(X)+h(Y)—h(X,Y)
=h(X)—-h(X]Y)=h))—-hY|X)
Saying h(X) = —D(Px||\) is a slight abuse, since A is not a probability

measure. Still, A(X) can be interpreted as negative distance to “uniform”
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Since
I(X;Y) = D(Pxy||Px ® Py)

I(X;Y) > 0 with = only if Pxy = Px ® Py, i.e. X and Y indep.
Furthermore, since
I(X;Y)=H(Y)-HY|X) o I(X;Y)=hY)—-hY|X)

we get H(Y|X) < H(Y) and h(Y|X) < h(Y),
conditioning reduces entropy
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f-divergence

f:(0,00) — R convex, strictly convex at x =1 and f(1) =0
Two probability measures P and @ on (€2, .A)

(1 any measure on (€2, A) such that both P < p and Q < p
Let ip
= @(w)a q(w)

The f-divergence between P and @)

Ds(PIQ) = [ f (%) i@ =TFq [f (ﬁ)]

When P < () we have

_dQ

p(w) = (w)

3
&

SE:; _ Zg(w) and thus  D(P|Q) = Eq {f (Z_g(“))]
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When both P and () are discrete, i.e. there is a countable set
K € A such that P(K) = Q(K) =1, let © = counting measure
on K, ie. u(F)=|F|for F C K. Then p and ¢ are pmf’s and

Di(PIQ) = Y qlw)f (ZM)

weK q<w>

When (2, A) = (R, B) and both P and Q have R-N derivatives
w.r.t. Lebesgue measure ;4 = X on B, then p and ¢ are pdfs and

D;(PIQ) = [ ala)s (%) i

In general, D¢(P||@Q) > 0 with = only for P =(Q on A
Also, D¢(P||Q) is convex in (P, Q)
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Examples (assuming P < Q):
Relative entropy, f(x) = xlogz

dP  dP dp
D¢(P||lQ) = D(P|Q) = Eq [@ log @] =br llog @]

Total variation, f(z) = 3|z — 1|

Dy(PIQ) = TV(P.Q) = 1o | ~ 1| = sup(PL) - QL)

® discrete

1
TV(PQ) =35 > Ip(x) — q(=)|
® abs. continuous

TV(P.Q) = 5 [ Iple) ~ ala)ld
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x2-divergence, \*(P,Q), f(z) = (z — 1)?

Squared Hellinger distance, H*(P,Q), f(x) = (1 — /z)?
Hellinger distance, H(P, Q) = /H?*(P, Q)

Le Cam distance, LC(P||Q), f(x) = (1 —x)/(2x + 2)

Jensen—Shannon symmetrized divergence,

(o) = wlog ==
v -o(739) o{a"39)
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Inequalities for f-divergences

Consider D¢(P||Q) and Dy(P||Q) for P and @Q on (2, .A)

Let
R(f,9) ={(Dy,Dy) : over P and Q}
and Ra(f,g9) = R(f, g) for the special case 2 = {0,1} and
A=0({0,1}) = {0,{0},{1},{0,1}}
Theorem: For any (€2, A), R = the convex hull of Ry

Let
F(x) =inf{y : (z,y) € R(f,9)}
then
Dy(P[|Q) = F(D¢(P|Q))
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. it can be proved1

Example: For g(x) = zInx and f(z) =|x — 1
that (x, F'(x)) is obtained from

vt (1 _ (coth(t) — %)2)

t 2
F =1 t coth(t) —
08 (sinh(t)) +tcoth(t) sinh2(¢)

by varying t € (0, 00)

That is, given a t, resulting in (x, F'), we have
D,(P|Q) = D(P|Q) = F for Dy(P|Q)=2TV(P,Q) =

(with D(PJ|@) in nats, i.e. based on Inx)

1See A. A. Fedotov, P. Harremoés and F. Topsge, “Refinements of Pinsker's

inequality,” IEEE Trans. IT, 2003. The paper uses V(P||Q) = 2TV(P||Q)
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Blue: The curve (z(t), F(t)) for t > 0
Green: The function 22 /2

Thus we have Pinsker’s inequality

D(PIQ) > 5(Ds(PIQ))? = 2(TV(P,Q))?
Or, for D(P||Q) in bits: D(P||Q) > 2loge (TV(P,Q))?
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Other inequalities between f-divergences:

%m(p, Q) < TV(P,Q) < H(P,Q)\/1 - HX(P,Q)/4

2
2—-H*(P,Q)

D(P||Q) < log(1+ x*(P|Q))
%HQ(P, Q) <LC(P,Q) < H*(P,Q)

XA(PQ) > 4 (TV(P,Q))?

D(P||Q) = 2log

For discrete p and ¢, “reverse Pinsker”

D(pllq) < log (1 + W(TV(ZD, q))z) <
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