Information Theory
 Spring semester, 2023

Assignment 8

Assigned: Friday, May 26, 2023
Due: Friday, June 2, 2023
M. Skoglund

Problem 8.1: MWS 7.19 (p. 200); while solving this problem you can also study the proof of Theorem 8 (the BCH bound)

Problem 8.2: MWS 9.1 (p. 264)
Problem 8.3: Specify $g(x)$ for a cyclic code of length $n=27$ over GF(2) for which $d_{\text {min }} \geq 9$.
Problem 8.4: Specify $g(x)$ for a cyclic code of length $n=26$ over $\operatorname{GF}(3)$ for which $d_{\text {min }} \geq 4$.
Problem 8.5: Consider the primitive and narrow-sense binary BCH code of length $n=15$ and with $\delta=7$. Assuming the received word (polynomial) is

$$
y(x)=x^{3}+x^{10}
$$

demonstrate by going through the decoding algorithm described in class (and in MWS) how $y(x)$ is decoded into the positions of the corresponding errors.

Problem 8.6: Consider a narrow-sense RS code with designed distance 3 and of length 15.

1. Compute the generator polynomial in the form

$$
g(x)=g_{0}+g_{1} x+\cdots+g_{r-1} x^{r-1}
$$

2. Derive a generator and a parity-check matrix
