Information Theory

Lecture 4

e Discrete channels, codes and capacity: CT7

e Channels: CT7.1-2
e Capacity and the coding theorem: CT7.3-7 and CT7.9

e Combining source and channel coding: CT7.13
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Discrete Channels

channel

Xn

—_—

e Let X and Y be finite sets.

e A discrete channel is a random mapping from X" to )"
described by the conditional pmfs p(y7|z?) for all n > 1,
! € X" and yi € Y".

e A pmf p(z7) induces a pmf p(y7) via the channel,

pyl) = pyll=T)p(at)
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The channel is stationary if for any n

k k
p(yllat) = p(yi iR lalsy), k=1,2,...

A stationary channel is memoryless if

n

p(1et) = T] pmlom), n=2,3,...

m=1

That is, each time the channel is used its effect on the output
is independent of previous and future uses.

A discrete memoryless channel (DMC) is completely described
by the triple (X, p(y|x),))
The binary symmetric channel (BSC) with crossover
probability ¢,

e a DMC with X =Y ={0,1} and p(1|0) = p(0]1) =¢
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A Block Channel Code

encoder channel decoder
n n
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! /8 ——

&

— (8%

\

o Define an (M, n) block channel code for a DMC
(X, p(ylz),Y) by
O An indexset Ty = {1,..., M}
® An encoder mapping o : Zpy — X™. The set

C= {:1:? cxy =ai), Vi€ IM}

of codewords is called the codebook.
©® A decoder mapping 5 : Y" — Ty
e The rate of the code is
log M
n

R £

[bits per channel use]
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Why?

o M different codewords {z}(1),...,z}(M)} can convey log M
bits of information per codeword, or R bits per channel use.

e Consider M = 2F |X| = 2, and assume that k < n. Then k
“information bits" are mapped into n > k “coded bits.”
Introduces redundancy; can be employed by the decoder to
correct channel errors
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[
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Error Probabilities

e Information symbol w € Z,;, with p(i) = Pr(w = i). Then,
for a given DMC and a given code

w— X! =aw) =Y = 0=756Y]"

e Define:

@ The conditional error probability: A\; = Pr(w # ilw = 1)
@® The maximal error probability: A(™ = max {\1,..., Ay}
© The average error probability:

M
P =Pr(@#w) =) Aipli)
1=1
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Jointly Typical Sequences

e The set A,Ef‘) of jointly typical sequences with respect to a
pmf p(x,y) is the set {(z],y])} of sequences for which

|—n"! logp(a}) — H(X)| < e
|— - logp (i) —H(Y)| <e

where

and where the entropies are computed based on p(z,y).
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e The joint AEP
(X7, Y{") drawn according to p(z7,y}) = [ —1 2(Tm; Ym)
o Pr((Xp,Y") € Aé")) > 1 — ¢ for n sufficiently large
o [AM| < 2n(H(XY)+e)
o If XT* and Y] are drawn independently according to
p(@t) =3 ,» p(at,y7) and p(yi) = >- . p(aT, 1), then

Pr ((X?, }7171) c Agn)) S 2—n(I(X;Y)_3€)
and for n sufficiently large
Pr ((X{L7?1n) S Aé’”‘)) > (1-— 5)2_n(I(X;Y)—|—36)

(with I(X;Y") computed for the pmf p(z,y))
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Channel Capacity

e For a fixed n, a code can convey more information for large
M = we would like to maximize the rate R = n~'log M
without sacrificing performance

e Which is the largest R that allows for a (very) low P{™?7?
e For a given channel we say that the rate R is achievable if
there exists a sequence of (M, n) codes, with M = [2"/],
such that the maximal probability of error A(®) — 0 as
n — o0.

The capacity C' of a channel is the supremum of all rates
that are achievable over the channel.
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Random Code Design

e Chose a joint pmf p(z}) on X™.

e Random code design: Draw M codewords
(i), i=1,..., M, i.i.d according to p(z7) and let these
define a codebook

Cp = {2} (1).... a7 (M)}.

e Note: The interpretation here is that the codebook is
“designed” in a random fashion. When the resulting code then
is used, the codebook must, of course, be fixed and known. ..
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A Lower Bound for C of a DMC

e ADMC (&, p(ylz), V)
e Fix a pmf p(x) for x € X.
Generate C, = {z7(1),...,27(M)} using p(z}) = [[ p(zm).

e A data symbol w is generated according to a uniform
distribution on Z,/, and 27 (w) is transmitted.

e The channel produces a corresponding output sequence Y|*
o Let A™ be the typical set w.r.t p(x,y) = p(y|x)p(x). At the
receiver, the decoder then uses the following decision rule:

e Index & was sent if: 1) (z7(w),Y{") € A for some small ¢;
2) no other w corresponds to a jointly typical (z}(w), Y{")
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e Now study
T = Pr(w # w)

where “Pr” is over the random codebook selection, the data
variable w and the channel.
e Symmetry — 7, = Pr(®w # ljw = 1)
o Let
E; = {(a7(i),Y?") € AlV}

then for a sufficiently large n,

M
o= P(Ef UE,U---UEy) < P(ES)+ Y P(E;)
1=2
<e+ (M- 1)2—n(I(X;Y)—3€) < g + 2~ UI(X;Y)—R=3¢)

because of the union bound and the joint AEP.
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e Note that

Zp yla)p(a) log L)

p(y)

with p(y) = >__p(y|x)p(z), where p(z) generated the random
codebook and p(y|x) is given by the channel.

e Let Ciot be the set of all possible codebooks that can be
generated by p(x7) = [[p(x.), then at least one C,, € Cyot
must give

Pe(") <7, < e+ 2 nUXY)—R=3¢)

— as long as R < I(X;Y) — 3¢ there exists at least one
Cp € Ciot, say C, that can give P™ 50 as n — oo
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o Order the codewords in C; according to the corresponding \;'s
and throw away the worst half —
e newrate R = R—n"*
e for the remaining codewords

() < ¢ 4 9 MI(X;Y)=R-30)

—> for any p(x), all rates R < I(X;Y) — 3¢ achievable —>
all rates R < max,) I(Y; X) — 3¢ achievable —

C >maxI(Y; X)

p(x)
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An Upper Bound for C' of a DMC

o Let C,, = {z}(1),...,27 (M)} be any sequence of codes that
can achieve A(™) — ( at a fixed rate R = n—'log M.

e Note that A\ — 0 = P{™ — 0 for any p(w); we can
assume C,, encodes equally probable w € Z),

e Fano's inequality —

1 1
.R§}¥MR+—@+N@ﬁwﬁﬁﬂ)§}¥MR+—+%%dL&}U
n n  px

That is, for any fixed achievable R

MM%OZ$R§%%HXY):>C§%%HKY)
bz plx
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The Channel Coding Theorem for DMC's

e Theorem (the channel coding theorem): For a given DMC
(X, p(y|x),Y), let p(x) be a pmf on X and let

C =max[(Y;X)
p(z)

— {57 3 plylo)po) tog <20

reX ye)y ZxEX p(y|a:)p(x)

Then C'is the capacity of the channel. That is, all rates
R < C and no rates R > (' are achievable.
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The Joint Source—Channel Coding Theorem

e A given (stationary and ergodic) discrete source S with
entropy rate H(S) [bits/source symbol].

e A length-L block of source symbols can be coded into k bits,
and then reconstructed without errors as long as k/L > H(S)
and as L — oo.

e A given DMC (X, p(y|z),)) with capacity C' [bits/channel
use].
o If k/n < C a channel code exists that can convey k bits of
information per n channel uses without errors as n — oc.
e [ source symbols — k information bits — n channel symbols;
will convey the source symbols without errors as long as
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e Hence, as long as H(S) < C' [bits/source symbol] the source
can be transmitted without errors, as both L. — oo and
n — 0.

o If H(S) > C there is no way of constructing a system with an
error probability that is not bounded away from zero.
(Fano's inequality, etc.)

e No system exists that can communicate a source without
errors for H(S) > C. One way of achieving error-free
performance, for H(S) < C, is to use separate source and
channel coding.
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