Information Theory

Lecture 6

® Block Codes and Finite Fields
® Codes: MWS1.1-MWS2.2, MWS5.1-2

® codes, minimum distance, linear codes, G and H matrices,
decoding, bounds,. ..

® Finite fields: MWS3

® groups, fields, the Galois field, polynomials,. ..
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Block Channel Codes

® An (n, M) block (channel) code over a field GF(q) is a set

C = {Xl,XQ,...,XM}

of codewords, with x,, € GF"(q).

® GF(q) = "set of ¢ < oo objects that can be added,
subtracted, divided and multiplied to stay inside the set”
* GF(2) ={0,1} modulo 2
* GF(p) ={0,1,...,p— 1} modulo p, for a prime number p
® GF(q) for a non-prime ¢; later. ..
® The code is now what we previously called the codebook;
encoder « and decoder 5 not included in definition. ..
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Some Fundamental Definitions

® Hamming distance: For x,y € GF"(q),
d(x,y) = number of components where x and y differ
® Hamming weight: For x € GF"(q),
w(x) = d(x,0)

where 0 = (0,0,...,0)

® Minimum distance of a code C:

dmin = d =min{d(x,y) : x #y; x,y €C}
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® A code C is linear if
x,ye(C = x+yel, x€C,acGF(q) = a-xeC
where 4+ and - are addition and multiplication in GF(q)

® A linear code C forms a linear vector space C GF"(q) of
dimension k < n

 C linear = exists a basis {g,}* _,, gm € C, that spans C,

I.e.,
k
X€el < x= Z U Em
m=1
for some u = (uq,...,u;) € GF¥(¢), and hence
M =|C| = q¢*
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* Let {g,}* _, define the rows of a k x n matrix G =
xcl < x=uG

for some u € GF¥(q).
® G is called a generator matrix for the code

® Any G with rows that form a maximal set of linearly
independent codewords is a valid generator matrix —
a code C can have different G's

® An (n, M) linear code of dimension k = log, M and with
minimum distance d is called an [n, k, d| code
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® Let r =n — k and let the rows of the r x n matrix H span

CL:{V;V.XZO, VxeC}, v-x= vaxm in GF(q),

m=1

that is, the orthogonal complement of C = kernel of G. Any
such H is called a parity check matrix for C.

e GHT" =0 (={0}**"); xe€C < HxT =07
® H is a generator for the dual code C+

® C linear = dpjn = minkec w(x) = minimal number of
linearly dependent columns of H
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Coding over a DMC

Y
=
v

- — -l (8 — DMC

_______

® Information variable: w € {1,..., M} (p(w) = 1/M)
® Encoding: w — x, = a(w) € C

® C linear with M = ¢* = any w corresponds to some
u, € GFk(q) and x, = u,G

A DMC (X, p(y|z),Y) with X = GF(q), used n times
—yel"

® potentially Y # X, but we will assume Y = X = GF(q)
Decoding: x = f(y) € C (— w)
Probability of error: P, = Pr(x # x)
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More about decoding

® x transmitted = y = x + e where e = (e, ..., €,) is the
error vector corresponding to y

® The nearest neighbor (NN) decoder

" if x' = argmind(y,x)
xeC

X=X

® Equiprobable w and a symmetric DMC such that
Pr(e,;, =0)=1—p>1/2 and Pr(e,, #0) =p/(q¢ — 1),
NN <= maximum likelihood <= minimum P,

e With NN decoding, a code with dnj, = d can correct

=]
t=|——
2
errors; as long as w(e) <t the codeword x will always be
recovered correctly from y
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® Decoding of linear codes

® The syndrome s of an error vector e,
s = Hy? = HeT

® NN decoding for linear codes can be implemented using
syndromes and the standard array. . .
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Bounds

® Hamming (or sphere-packing): For a code with
t = [(dmin — 1)/2],

® equality = perfect code = can correct all e of weight
< t and no others
® Hamming codes are perfect linear binary codes with t =1

® Gilbert—Varshamov: There exists an [n, k, d] code over GF(q)
with r =n — k < p and d > ¢ provided that

%f(nzl)@—lf<qp

1=0
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e Singleton: For any [n, k,d] code,
r=n—k>d-—1

® r=d—1 = maximum distance separable (MDS)
® For MDS codes:

® Any r columns in H are linearly independent
® Any k columns in G are linearly independent
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Two codes C and D of length n over GF(q) are equivalent if
there exist n permutations 7y, ..., T, of field elements and a
permutation o of coordinate positions such that

(z1,...,2n) €C = of{(mi(z1),...,mn(zn))} €D

In particular, swapping the same two coordinates in all
codewords gives an equivalent code

For a linear code, (G, H) can be manipulated (add, subtract,
swap rows, swap columns) into an equivalent linear code in
systematic or standard form

Gon = [LA]  Hy= [~ ATJL]

For MDS codes: no swapping of columns needed
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Groups

® A group is a set G with an associated operation - (often
thought of as multiplication), subject to:
® r-(y-2)=(x-y) -zforall z,y,x € G
® There exists an element 1 € G (the neutral or unity), such that
lrz=z-1=zforallzeCG
® For any = € G there exists an element 27! € G (inverse), such
thatx-a =2t 2=1

e |f, in addition, it holds that x -y = y - x for any x,y € G the
group is called commutative or Abelian

* A finite group G is cyclic of order rif G = {1,z,2%,...,2" 1}
(z? = z - x and so on). The element x is the generator of G.

Mikael Skoglund, Information Theory 13/17

Finite Fields

® The Galois field GF(q) of order q is a (the) set of ¢ < oo
objects for which the operations + (addition) and -
(multiplication) exist, such that for any «, 8,v € GF(q)

a+pf=0F+0a a-B=F «
at(B+y)=(a+p)+7 a(B-7)=(a-F)7
a-(B+7y)=a-B+a-v
Furthermore, for any oo € GF(q) the elements 0 (additive

neutral), 1 (multiplicative neutral), —a (additive inverse) and
a~! (multiplicative inverse, for a # 0) must exist, such that

O+a=a, (—a)+a=0, 0-aa=0

l-a=a, (¢! -a=1
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® There is only one GF(q) in the sense that all finite fields of
order g are isomorphic;

® any two fields F' and G of order g are essentially the same
field, they differ only in the way elements are named
® As mentioned, for p a prime number
® GF(p) = the integers {0,...,p — 1} modulo p
for any non-prime integer ¢,

® GF(q) is a finite field <= g = p™ for some prime p and
integer m > 1

® GF(p™), m > 1, can be constructed using an irreducible
polynomial w(z) of degree m over GF(p). ..
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Polynomials

® A polynomial g(z) of degree m over a finite field GF(q) has
the form

1

9(x) = apmx™ + apm_12™ T+ -+ a1 + g

where a; € GF(q), [ =0,...,m.
® When q¢ = p = a prime = integer coefficients and operations
coefficient-wise modulo p
® g(x) is monic if a,,, =1
® A polynomial w(xz) over GF(p) is irreducible over GF(p) if
m(x) cannot be written as the product of two other
polynomials over GF(p) (with degrees > 1)
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The Field GF(p™)

® lLet 7w(z) be an irreducible degree-m polynomial over GF(p),
with p a prime, then

GF(p™) = all polynomials over GF(p) of degree < m — 1, with
calculations modulo p and 7 (x)

“use the equation m(x) = 0 to reduce ™ to degree < m'"

® Modulo a polynomial: Two polynomials a(x) and b(x) over
GF(q) are equal modulo a polynomial p(x) if

a(r) = qu(z)p(z) +r(x), b(x) = q(x)p(z) + r(z)

Mikael Skoglund, Information Theory 17/17



