Information Theory

Lecture 6

Block Codes and Finite Fields

- Codes: MWS1.1–MWS2.2, MWS5.1–2
 - codes, minimum distance, linear codes, G and H matrices, decoding, bounds,...
- Finite fields: MWS3
 - groups, fields, the Galois field, polynomials,...

Mikael Skoglund, Information Theory

Block Channel Codes

• An (n, M) block (channel) code over a field GF(q) is a set

$$\mathcal{C} = \{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_M\}$$

of *codewords*, with $\mathbf{x}_m \in \mathrm{GF}^n(q)$.

- GF(q) = "set of q < ∞ objects that can be added, subtracted, divided and multiplied to stay inside the set"
 - $GF(2) = \{0, 1\} \text{ modulo } 2$
 - $GF(p) = \{0, 1, \dots, p-1\}$ modulo p, for a prime number p
 - GF(q) for a non-prime q; later...
- The *code* is now what we previously called the *codebook*; encoder α and decoder β not included in definition...

Some Fundamental Definitions

• Hamming distance: For $\mathbf{x}, \mathbf{y} \in \mathrm{GF}^n(q)$,

 $d(\mathbf{x}, \mathbf{y}) =$ number of components where \mathbf{x} and \mathbf{y} differ

• Hamming weight: For $\mathbf{x} \in \mathrm{GF}^n(q)$,

$$w(\mathbf{x}) = d(\mathbf{x}, \mathbf{0})$$

where $\mathbf{0} = (0, 0, \dots, 0)$

• *Minimum distance* of a code *C*:

$$d_{\min} = d = \min \left\{ d(\mathbf{x}, \mathbf{y}) : \mathbf{x} \neq \mathbf{y}; \ \mathbf{x}, \mathbf{y} \in \mathcal{C} \right\}$$

Mikael Skoglund, Information Theory

3/17

• A code *C* is *linear* if

 $\mathbf{x}, \mathbf{y} \in \mathcal{C} \implies \mathbf{x} + \mathbf{y} \in \mathcal{C}, \quad \mathbf{x} \in \mathcal{C}, \alpha \in \mathrm{GF}(q) \implies \alpha \cdot \mathbf{x} \in \mathcal{C}$ where + and \cdot are addition and multiplication in $\mathsf{GF}(q)$

- A linear code C forms a *linear vector space* ⊂ GFⁿ(q) of dimension k < n
- C linear \implies exists a *basis* $\{\mathbf{g}_m\}_{m=1}^k$, $\mathbf{g}_m \in C$, that spans C, i.e.,

$$\mathbf{x} \in \mathcal{C} \iff \mathbf{x} = \sum_{m=1}^{k} u_m \mathbf{g}_m$$

for some $\mathbf{u} = (u_1, \dots, u_k) \in \mathrm{GF}^k(q)$, and hence $M = |\mathcal{C}| = q^k$

• Let $\{\mathbf{g}_m\}_{m=1}^k$ define the rows of a $k \times n$ matrix $\mathbf{G} \implies$

$$\mathbf{x} \in \mathcal{C} \iff \mathbf{x} = \mathbf{u} \mathbf{G}$$

for some $\mathbf{u} \in \mathrm{GF}^k(q)$.

- G is called a *generator matrix* for the code
- Any G with rows that form a maximal set of linearly independent codewords is a valid generator matrix ⇒ a code C can have different G's
- An (n, M) linear code of dimension k = log_q M and with minimum distance d is called an [n, k, d] code

• Let r = n - k and let the rows of the $r \times n$ matrix \mathbf{H} span

$$\mathcal{C}^{\perp} = \{ \mathbf{v} : \mathbf{v} \cdot \mathbf{x} = 0, \ \forall \mathbf{x} \in \mathcal{C} \}, \quad \mathbf{v} \cdot \mathbf{x} = \sum_{m=1}^{n} v_m x_m \text{ in } \mathrm{GF}(q),$$

that is, the *orthogonal complement* of C = kernel of G. Any such H is called a *parity check* matrix for C.

- $\mathbf{G}\mathbf{H}^T = \mathbf{0} \quad (= \{0\}^{k \times r}); \quad \mathbf{x} \in \mathcal{C} \iff \mathbf{H}\mathbf{x}^T = \mathbf{0}^T$
- ${f H}$ is a generator for the *dual code* ${\cal C}^\perp$
- C linear ⇒ d_{min} = min_{x∈C} w(x) = minimal number of linearly dependent columns of H

Coding over a DMC

- Information variable: $\omega \in \{1, \dots, M\}$ $(p(\omega) = 1/M)$
- Encoding: $\omega \to \mathbf{x}_{\omega} = \alpha(\omega) \in \mathcal{C}$
 - C linear with $M = q^k \implies$ any ω corresponds to some $\mathbf{u}_{\omega} \in \mathrm{GF}^k(q)$ and $\mathbf{x}_{\omega} = \mathbf{u}_{\omega} \mathbf{G}$
- A DMC $(\mathcal{X}, p(y|x), \mathcal{Y})$ with $\mathcal{X} = GF(q)$, used n times $\rightarrow \mathbf{y} \in \mathcal{Y}^n$
 - potentially $\mathcal{Y} \neq \mathcal{X}$, but we will assume $\mathcal{Y} = \mathcal{X} = GF(q)$
- Decoding: $\hat{\mathbf{x}} = \beta(\mathbf{y}) \in \mathcal{C} (\to \hat{\omega})$
- Probability of error: $P_e = \Pr(\hat{\mathbf{x}} \neq \mathbf{x})$

Mikael Skoglund, Information Theory

More about decoding

- x transmitted \implies y = x + e where e = (e_1, \dots, e_n) is the *error vector* corresponding to y
- The nearest neighbor (NN) decoder

$$\hat{\mathbf{x}} = \mathbf{x}'$$
 if $\mathbf{x}' = \arg\min_{\mathbf{x}\in\mathcal{C}} d(\mathbf{y}, \mathbf{x})$

- Equiprobable ω and a symmetric DMC such that $\Pr(e_m = 0) = 1 - p > 1/2$ and $\Pr(e_m \neq 0) = p/(q - 1)$, $NN \iff maximum \ likelihood \iff minimum \ P_e$
- With NN decoding, a code with $d_{\min} = d$ can correct

$$t = \left\lfloor \frac{d-1}{2} \right\rfloor$$

errors; as long as $w(\mathbf{e}) \leq t$ the codeword \mathbf{x} will *always* be recovered correctly from \mathbf{y}

• Decoding of linear codes

• The syndrome s of an error vector e,

$$\mathbf{s} = \mathbf{H}\mathbf{y}^T = \mathbf{H}\mathbf{e}^T$$

 NN decoding for linear codes can be implemented using syndromes and the standard array...

Mikael Skoglund, Information Theory

Bounds

• Hamming (or sphere-packing): For a code with $t = \lfloor (d_{\min} - 1)/2 \rfloor$,

$$\sum_{i=0}^{t} \binom{n}{i} (q-1)^i \le M^{-1}q^n$$

- equality \implies *perfect* code \implies can correct all e of weight $\leq t$ and no others
- Hamming codes are perfect linear binary codes with t = 1
- *Gilbert–Varshamov*: There exists an [n, k, d] code over GF(q) with $r = n k \le \rho$ and $d \ge \delta$ provided that

$$\sum_{i=0}^{\delta-2} \binom{n-1}{i} (q-1)^i < q^{\rho}$$

• Singleton: For any [n, k, d] code,

$$r = n - k \ge d - 1$$

- $r = d 1 \implies$ maximum distance separable (MDS)
- For MDS codes:
 - Any r columns in **H** are linearly independent
 - Any k columns in G are linearly independent

Mikael Skoglund, Information Theory

Some Additional Definitions

 Two codes C and D of length n over GF(q) are equivalent if there exist n permutations π₁,..., π_n of field elements and a permutation σ of coordinate positions such that

$$(x_1,\ldots,x_n) \in \mathcal{C} \implies \sigma\{(\pi_1(x_1),\ldots,\pi_n(x_n))\} \in \mathcal{D}$$

- In particular, swapping the same two coordinates in all codewords gives an equivalent code
- For a linear code, (G, H) can be manipulated (add, subtract, swap rows, swap columns) into an equivalent linear code in *systematic* or *standard form*

$$\mathbf{G}_{\mathsf{sys}} = \begin{bmatrix} \mathbf{I}_k | \mathbf{A} \end{bmatrix} \qquad \mathbf{H}_{\mathsf{sys}} = \begin{bmatrix} -\mathbf{A}^T | \mathbf{I}_r \end{bmatrix}$$

• For MDS codes: no swapping of columns needed

Groups

- A *group* is a set G with an associated operation \cdot (often thought of as multiplication), subject to:
 - $x \cdot (y \cdot z) = (x \cdot y) \cdot z$ for all $x, y, x \in G$
 - There exists an element $1 \in G$ (the neutral or unity), such that $1 \cdot x = x \cdot 1 = x$ for all $x \in G$
 - For any $x \in G$ there exists an element $x^{-1} \in G$ (inverse), such that $x \cdot x^{-1} = x^{-1} \cdot x = 1$
- If, in addition, it holds that $x \cdot y = y \cdot x$ for any $x, y \in G$ the group is called *commutative* or *Abelian*
- A finite group G is cyclic of order r if G = {1, x, x²,..., x^{r-1}} (x² = x · x and so on). The element x is the generator of G.

Mikael Skoglund, Information Theory

Finite Fields

The Galois field GF(q) of order q is a (the) set of q < ∞ objects for which the operations + (addition) and · (multiplication) exist, such that for any α, β, γ ∈ GF(q)

$$\alpha + \beta = \beta + \alpha, \quad \alpha \cdot \beta = \beta \cdot \alpha$$
$$\alpha + (\beta + \gamma) = (\alpha + \beta) + \gamma, \quad \alpha \cdot (\beta \cdot \gamma) = (\alpha \cdot \beta) \cdot \gamma$$
$$\alpha \cdot (\beta + \gamma) = \alpha \cdot \beta + \alpha \cdot \gamma$$

Furthermore, for any $\alpha \in GF(q)$ the elements 0 (additive neutral), 1 (multiplicative neutral), $-\alpha$ (additive inverse) and α^{-1} (multiplicative inverse, for $\alpha \neq 0$) must exist, such that

$$0 + \alpha = \alpha, \quad (-\alpha) + \alpha = 0, \quad 0 \cdot \alpha = 0$$
$$1 \cdot \alpha = \alpha, \quad (\alpha^{-1}) \cdot \alpha = 1$$

- There is only one GF(q) in the sense that all finite fields of order q are isomorphic;
 - any two fields F and G of order q are essentially the same field, they differ only in the way elements are named
- As mentioned, for p a prime number
 - GF(p) =the integers $\{0, \dots, p-1\}$ modulo p

for any non-prime integer q,

- GF(q) is a finite field $\iff q = p^m$ for some prime p and integer $m \ge 1$
- GF(p^m), m > 1, can be constructed using an *irreducible* polynomial π(x) of degree m over GF(p)...

Mikael Skoglund, Information Theory

Polynomials

• A polynomial g(x) of degree m over a finite field $\mathrm{GF}(q)$ has the form

$$g(x) = \alpha_m x^m + \alpha_{m-1} x^{m-1} + \dots + \alpha_1 x + \alpha_0$$

where $\alpha_l \in GF(q), \ l = 0, \ldots, m$.

- When q = p = a prime \Rightarrow integer coefficients and operations coefficient-wise modulo p
- g(x) is monic if $\alpha_m = 1$
- A polynomial π(x) over GF(p) is *irreducible* over GF(p) if π(x) cannot be written as the product of two other polynomials over GF(p) (with degrees ≥ 1)

The Field $GF(p^m)$

• Let $\pi(x)$ be an irreducible degree-m polynomial over $\mathrm{GF}(p)$, with p a prime, then

 $\mathrm{GF}(p^m)=$ all polynomials over $\mathrm{GF}(p)$ of degree $\leq m-1$, with calculations modulo p and $\pi(x)$

"use the equation $\pi(x)=0$ to reduce x^m to degree < m "

• Modulo a polynomial: Two polynomials a(x) and b(x) over GF(q) are equal modulo a polynomial p(x) if

$$a(x) = q_1(x)p(x) + r(x), \quad b(x) = q_2(x)p(x) + r(x)$$

Mikael Skoglund, Information Theory