
Information Theory
Lecture 6

• Block Codes and Finite Fields
• Codes: MWS1.1–MWS2.2, MWS5.1–2

• codes, minimum distance, linear codes, G and H matrices,
decoding, bounds,. . .

• Finite fields: MWS3
• groups, fields, the Galois field, polynomials,. . .
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Block Channel Codes

• An (n,M) block (channel) code over a field GF(q) is a set

C = {x1,x2, . . . ,xM}

of codewords, with xm ∈ GFn(q).
• GF(q) = “set of q <∞ objects that can be added,

subtracted, divided and multiplied to stay inside the set”
• GF(2) = {0, 1} modulo 2
• GF(p) = {0, 1, . . . , p− 1} modulo p, for a prime number p
• GF(q) for a non-prime q; later. . .

• The code is now what we previously called the codebook;
encoder α and decoder β not included in definition. . .
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Some Fundamental Definitions

• Hamming distance: For x,y ∈ GFn(q),

d(x,y) = number of components where x and y differ

• Hamming weight: For x ∈ GFn(q),

w(x) = d(x,0)

where 0 = (0, 0, . . . , 0)

• Minimum distance of a code C:

dmin = d = min {d(x,y) : x 6= y; x,y ∈ C}
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• A code C is linear if

x,y ∈ C =⇒ x + y ∈ C, x ∈ C, α ∈ GF(q) =⇒ α · x ∈ C
where + and · are addition and multiplication in GF(q)

• A linear code C forms a linear vector space ⊂ GFn(q) of
dimension k < n

• C linear =⇒ exists a basis {gm}km=1, gm ∈ C, that spans C,
i.e.,

x ∈ C ⇐⇒ x =

k∑

m=1

umgm

for some u = (u1, . . . , uk) ∈ GFk(q), and hence
M = |C| = qk
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• Let {gm}km=1 define the rows of a k × n matrix G =⇒

x ∈ C ⇐⇒ x = uG

for some u ∈ GFk(q).

• G is called a generator matrix for the code

• Any G with rows that form a maximal set of linearly
independent codewords is a valid generator matrix =⇒
a code C can have different G’s

• An (n,M) linear code of dimension k = logqM and with
minimum distance d is called an [n, k, d] code
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• Let r = n− k and let the rows of the r × n matrix H span

C⊥ = {v : v ·x = 0, ∀x ∈ C}, v ·x =
n∑

m=1

vmxm in GF(q),

that is, the orthogonal complement of C = kernel of G. Any
such H is called a parity check matrix for C.
• GHT = 0 (= {0}k×r); x ∈ C ⇐⇒ HxT = 0T

• H is a generator for the dual code C⊥

• C linear =⇒ dmin = minx∈C w(x) = minimal number of
linearly dependent columns of H
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Coding over a DMC

ω
α

x y
β

x̂ ω̂

• Information variable: ω ∈ {1, . . . ,M} (p(ω) = 1/M)
• Encoding: ω → xω = α(ω) ∈ C

• C linear with M = qk =⇒ any ω corresponds to some
uω ∈ GFk(q) and xω = uωG

• A DMC (X , p(y|x),Y) with X = GF(q), used n times
→ y ∈ Yn
• potentially Y 6= X , but we will assume Y = X = GF(q)

• Decoding: x̂ = β(y) ∈ C (→ ω̂)

• Probability of error: Pe = Pr(x̂ 6= x)
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More about decoding

• x transmitted =⇒ y = x + e where e = (e1, . . . , en) is the
error vector corresponding to y

• The nearest neighbor (NN) decoder

x̂ = x′ if x′ = arg min
x∈C

d(y,x)

• Equiprobable ω and a symmetric DMC such that
Pr(em = 0) = 1− p > 1/2 and Pr(em 6= 0) = p/(q − 1),

NN ⇐⇒ maximum likelihood ⇐⇒ minimum Pe

• With NN decoding, a code with dmin = d can correct

t =

⌊
d− 1

2

⌋

errors; as long as w(e) ≤ t the codeword x will always be
recovered correctly from y
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• Decoding of linear codes
• The syndrome s of an error vector e,

s = HyT = HeT

• NN decoding for linear codes can be implemented using
syndromes and the standard array. . .
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Bounds

• Hamming (or sphere-packing): For a code with
t = b(dmin − 1)/2c,

t∑

i=0

(
n

i

)
(q − 1)i ≤M−1qn

• equality =⇒ perfect code =⇒ can correct all e of weight
≤ t and no others

• Hamming codes are perfect linear binary codes with t = 1

• Gilbert–Varshamov: There exists an [n, k, d] code over GF(q)
with r = n− k ≤ ρ and d ≥ δ provided that

δ−2∑

i=0

(
n− 1

i

)
(q − 1)i < qρ

Mikael Skoglund, Information Theory 10/17



• Singleton: For any [n, k, d] code,

r = n− k ≥ d− 1

• r = d− 1 =⇒ maximum distance separable (MDS)
• For MDS codes:

• Any r columns in H are linearly independent
• Any k columns in G are linearly independent
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Some Additional Definitions

• Two codes C and D of length n over GF(q) are equivalent if
there exist n permutations π1, . . . , πn of field elements and a
permutation σ of coordinate positions such that

(x1, . . . , xn) ∈ C =⇒ σ
{

(π1(x1), . . . , πn(xn))
}
∈ D

• In particular, swapping the same two coordinates in all
codewords gives an equivalent code

• For a linear code, (G,H) can be manipulated (add, subtract,
swap rows, swap columns) into an equivalent linear code in
systematic or standard form

Gsys =
[
Ik
∣∣A
]

Hsys =
[
−AT

∣∣Ir
]

• For MDS codes: no swapping of columns needed
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Groups

• A group is a set G with an associated operation · (often
thought of as multiplication), subject to:
• x · (y · z) = (x · y) · z for all x, y, x ∈ G
• There exists an element 1 ∈ G (the neutral or unity), such that

1 · x = x · 1 = x for all x ∈ G
• For any x ∈ G there exists an element x−1 ∈ G (inverse), such

that x · x−1 = x−1 · x = 1

• If, in addition, it holds that x · y = y · x for any x, y ∈ G the
group is called commutative or Abelian

• A finite group G is cyclic of order r if G = {1, x, x2, . . . , xr−1}
(x2 = x · x and so on). The element x is the generator of G.
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Finite Fields

• The Galois field GF(q) of order q is a (the) set of q <∞
objects for which the operations + (addition) and ·
(multiplication) exist, such that for any α, β, γ ∈ GF(q)

α+ β = β + α, α · β = β · α
α+ (β + γ) = (α+ β) + γ, α · (β · γ) = (α · β) · γ

α · (β + γ) = α · β + α · γ

Furthermore, for any α ∈ GF(q) the elements 0 (additive
neutral), 1 (multiplicative neutral), −α (additive inverse) and
α−1 (multiplicative inverse, for α 6= 0) must exist, such that

0 + α = α, (−α) + α = 0, 0 · α = 0

1 · α = α, (α−1) · α = 1
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• There is only one GF(q) in the sense that all finite fields of
order q are isomorphic;
• any two fields F and G of order q are essentially the same

field, they differ only in the way elements are named

• As mentioned, for p a prime number
• GF(p) = the integers {0, . . . , p− 1} modulo p

for any non-prime integer q,
• GF(q) is a finite field ⇐⇒ q = pm for some prime p and

integer m ≥ 1
• GF(pm), m > 1, can be constructed using an irreducible

polynomial π(x) of degree m over GF(p). . .
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Polynomials

• A polynomial g(x) of degree m over a finite field GF(q) has
the form

g(x) = αmx
m + αm−1xm−1 + · · ·+ α1x+ α0

where αl ∈ GF(q), l = 0, . . . ,m.
• When q = p = a prime ⇒ integer coefficients and operations

coefficient-wise modulo p
• g(x) is monic if αm = 1

• A polynomial π(x) over GF(p) is irreducible over GF(p) if
π(x) cannot be written as the product of two other
polynomials over GF(p) (with degrees ≥ 1)
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The Field GF(pm)

• Let π(x) be an irreducible degree-m polynomial over GF(p),
with p a prime, then

GF(pm) = all polynomials over GF(p) of degree ≤ m− 1, with
calculations modulo p and π(x)

“use the equation π(x) = 0 to reduce xm to degree < m”

• Modulo a polynomial: Two polynomials a(x) and b(x) over
GF(q) are equal modulo a polynomial p(x) if

a(x) = q1(x)p(x) + r(x), b(x) = q2(x)p(x) + r(x)
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