Information Theory

Lecture 6

- Block Codes and Finite Fields

- Codes: MWS1.1-MWS2.2, MWS5.1-2
- codes, minimum distance, linear codes, G and H matrices, decoding, bounds,...
- Finite fields: MWS3
- groups, fields, the Galois field, polynomials,...

Block Channel Codes

- An (n, M) block (channel) code over a field $\mathrm{GF}(q)$ is a set

$$
\mathcal{C}=\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{M}\right\}
$$

of codewords, with $\mathbf{x}_{m} \in \mathrm{GF}^{n}(q)$.

- $\operatorname{GF}(q)=$ "set of $q<\infty$ objects that can be added, subtracted, divided and multiplied to stay inside the set"
- $\mathrm{GF}(2)=\{0,1\}$ modulo 2
- $\mathrm{GF}(p)=\{0,1, \ldots, p-1\}$ modulo p, for a prime number p
- $\mathrm{GF}(q)$ for a non-prime q; later...
- The code is now what we previously called the codebook; encoder α and decoder β not included in definition...
- Hamming distance: For $\mathbf{x}, \mathbf{y} \in \mathrm{GF}^{n}(q)$, $d(\mathbf{x}, \mathbf{y})=$ number of components where \mathbf{x} and \mathbf{y} differ
- Hamming weight: For $\mathbf{x} \in \mathrm{GF}^{n}(q)$,

$$
w(\mathbf{x})=d(\mathbf{x}, \mathbf{0})
$$

where $\mathbf{0}=(0,0, \ldots, 0)$

- Minimum distance of a code \mathcal{C} :

$$
d_{\text {min }}=d=\min \{d(\mathbf{x}, \mathbf{y}): \mathbf{x} \neq \mathbf{y} ; \mathbf{x}, \mathbf{y} \in \mathcal{C}\}
$$

- A code \mathcal{C} is linear if
$\mathbf{x}, \mathbf{y} \in \mathcal{C} \Longrightarrow \mathbf{x}+\mathbf{y} \in \mathcal{C}, \quad \mathbf{x} \in \mathcal{C}, \alpha \in \operatorname{GF}(q) \Longrightarrow \alpha \cdot \mathbf{x} \in \mathcal{C}$ where + and \cdot are addition and multiplication in $\mathrm{GF}(q)$
- A linear code \mathcal{C} forms a linear vector space $\subset \mathrm{GF}^{n}(q)$ of dimension $k<n$
- \mathcal{C} linear \Longrightarrow exists a basis $\left\{\mathbf{g}_{m}\right\}_{m=1}^{k}, \mathbf{g}_{m} \in \mathcal{C}$, that spans \mathcal{C}, i.e.,

$$
\mathbf{x} \in \mathcal{C} \Longleftrightarrow \mathbf{x}=\sum_{m=1}^{k} u_{m} \mathbf{g}_{m}
$$

for some $\mathbf{u}=\left(u_{1}, \ldots, u_{k}\right) \in \operatorname{GF}^{k}(q)$, and hence $M=|\mathcal{C}|=q^{k}$

- Let $\left\{\mathbf{g}_{m}\right\}_{m=1}^{k}$ define the rows of a $k \times n$ matrix $\mathbf{G} \Longrightarrow$

$$
\mathbf{x} \in \mathcal{C} \Longleftrightarrow \mathbf{x}=\mathbf{u G}
$$

for some $\mathbf{u} \in \mathrm{GF}^{k}(q)$.

- \mathbf{G} is called a generator matrix for the code
- Any G with rows that form a maximal set of linearly independent codewords is a valid generator matrix \Longrightarrow a code \mathcal{C} can have different G 's
- An (n, M) linear code of dimension $k=\log _{q} M$ and with minimum distance d is called an $[n, k, d]$ code
- Let $r=n-k$ and let the rows of the $r \times n$ matrix \mathbf{H} span

$$
\mathcal{C}^{\perp}=\{\mathbf{v}: \mathbf{v} \cdot \mathbf{x}=0, \quad \forall \mathbf{x} \in \mathcal{C}\}, \quad \mathbf{v} \cdot \mathbf{x}=\sum_{m=1}^{n} v_{m} x_{m} \quad \text { in } \operatorname{GF}(q)
$$

that is, the orthogonal complement of $\mathcal{C}=$ kernel of \mathbf{G}. Any such \mathbf{H} is called a parity check matrix for \mathcal{C}.

- $\mathbf{G H}^{T}=\mathbf{0} \quad\left(=\{0\}^{k \times r}\right) ; \quad \mathbf{x} \in \mathcal{C} \Longleftrightarrow \mathbf{H x}^{T}=\mathbf{0}^{T}$
- \mathbf{H} is a generator for the dual code \mathcal{C}^{\perp}
- \mathcal{C} linear $\Longrightarrow d_{\text {min }}=\min _{\mathbf{x} \in \mathcal{C}} w(\mathbf{x})=$ minimal number of linearly dependent columns of \mathbf{H}

Coding over a DMC

- Information variable: $\omega \in\{1, \ldots, M\}(p(\omega)=1 / M)$
- Encoding: $\omega \rightarrow \mathbf{x}_{\omega}=\alpha(\omega) \in \mathcal{C}$
- \mathcal{C} linear with $M=q^{k} \Longrightarrow$ any ω corresponds to some $\mathbf{u}_{\omega} \in \mathrm{GF}^{k}(q)$ and $\mathbf{x}_{\omega}=\mathbf{u}_{\omega} \mathbf{G}$
- A DMC $(\mathcal{X}, p(y \mid x), \mathcal{Y})$ with $\mathcal{X}=\operatorname{GF}(q)$, used n times $\rightarrow \mathbf{y} \in \mathcal{Y}^{n}$
- potentially $\mathcal{Y} \neq \mathcal{X}$, but we will assume $\mathcal{Y}=\mathcal{X}=\operatorname{GF}(q)$
- Decoding: $\hat{\mathbf{x}}=\beta(\mathbf{y}) \in \mathcal{C}(\rightarrow \hat{\omega})$
- Probability of error: $P_{e}=\operatorname{Pr}(\hat{\mathbf{x}} \neq \mathbf{x})$

More about decoding

- \mathbf{x} transmitted $\Longrightarrow \mathbf{y}=\mathbf{x}+\mathbf{e}$ where $\mathbf{e}=\left(e_{1}, \ldots, e_{n}\right)$ is the error vector corresponding to \mathbf{y}
- The nearest neighbor (NN) decoder

$$
\hat{\mathbf{x}}=\mathbf{x}^{\prime} \quad \text { if } \quad \mathbf{x}^{\prime}=\arg \min _{\mathbf{x} \in \mathcal{C}} d(\mathbf{y}, \mathbf{x})
$$

- Equiprobable ω and a symmetric DMC such that

$$
\operatorname{Pr}\left(e_{m}=0\right)=1-p>1 / 2 \text { and } \operatorname{Pr}\left(e_{m} \neq 0\right)=p /(q-1),
$$ NN \Longleftrightarrow maximum likelihood \Longleftrightarrow minimum P_{e}

- With NN decoding, a code with $d_{\text {min }}=d$ can correct

$$
t=\left\lfloor\frac{d-1}{2}\right\rfloor
$$

errors; as long as $w(\mathbf{e}) \leq t$ the codeword \mathbf{x} will always be recovered correctly from \mathbf{y}

- Decoding of linear codes

- The syndrome \mathbf{s} of an error vector \mathbf{e},

$$
\mathbf{s}=\mathbf{H} \mathbf{y}^{T}=\mathbf{H e}^{T}
$$

- NN decoding for linear codes can be implemented using syndromes and the standard array. . .

Bounds

- Hamming (or sphere-packing): For a code with
$t=\left\lfloor\left(d_{\text {min }}-1\right) / 2\right\rfloor$,

$$
\sum_{i=0}^{t}\binom{n}{i}(q-1)^{i} \leq M^{-1} q^{n}
$$

- equality \Longrightarrow perfect code \Longrightarrow can correct all e of weight $\leq t$ and no others
- Hamming codes are perfect linear binary codes with $t=1$
- Gilbert-Varshamov: There exists an $[n, k, d]$ code over $\operatorname{GF}(q)$ with $r=n-k \leq \rho$ and $d \geq \delta$ provided that

$$
\sum_{i=0}^{\delta-2}\binom{n-1}{i}(q-1)^{i}<q^{\rho}
$$

- Singleton: For any $[n, k, d]$ code,

$$
r=n-k \geq d-1
$$

- $r=d-1 \Longrightarrow$ maximum distance separable (MDS)
- For MDS codes:
- Any r columns in \mathbf{H} are linearly independent
- Any k columns in \mathbf{G} are linearly independent

Some Additional Definitions

- Two codes \mathcal{C} and \mathcal{D} of length n over $\operatorname{GF}(q)$ are equivalent if there exist n permutations π_{1}, \ldots, π_{n} of field elements and a permutation σ of coordinate positions such that

$$
\left(x_{1}, \ldots, x_{n}\right) \in \mathcal{C} \Longrightarrow \sigma\left\{\left(\pi_{1}\left(x_{1}\right), \ldots, \pi_{n}\left(x_{n}\right)\right)\right\} \in \mathcal{D}
$$

- In particular, swapping the same two coordinates in all codewords gives an equivalent code
- For a linear code, (\mathbf{G}, \mathbf{H}) can be manipulated (add, subtract, swap rows, swap columns) into an equivalent linear code in systematic or standard form

$$
\mathbf{G}_{\text {sys }}=\left[\mathbf{I}_{k} \mid \mathbf{A}\right] \quad \mathbf{H}_{\text {sys }}=\left[-\mathbf{A}^{T} \mid \mathbf{I}_{r}\right]
$$

- For MDS codes: no swapping of columns needed
- A group is a set G with an associated operation • (often thought of as multiplication), subject to:
- $x \cdot(y \cdot z)=(x \cdot y) \cdot z$ for all $x, y, x \in G$
- There exists an element $1 \in G$ (the neutral or unity), such that $1 \cdot x=x \cdot 1=x$ for all $x \in G$
- For any $x \in G$ there exists an element $x^{-1} \in G$ (inverse), such that $x \cdot x^{-1}=x^{-1} \cdot x=1$
- If, in addition, it holds that $x \cdot y=y \cdot x$ for any $x, y \in G$ the group is called commutative or Abelian
- A finite group G is cyclic of order r if $G=\left\{1, x, x^{2}, \ldots, x^{r-1}\right\}$ ($x^{2}=x \cdot x$ and so on). The element x is the generator of G.

Finite Fields

- The Galois field $\mathrm{GF}(q)$ of order q is a (the) set of $q<\infty$ objects for which the operations + (addition) and . (multiplication) exist, such that for any $\alpha, \beta, \gamma \in \mathrm{GF}(q)$

$$
\begin{gathered}
\alpha+\beta=\beta+\alpha, \quad \alpha \cdot \beta=\beta \cdot \alpha \\
\alpha+(\beta+\gamma)=(\alpha+\beta)+\gamma, \quad \alpha \cdot(\beta \cdot \gamma)=(\alpha \cdot \beta) \cdot \gamma \\
\alpha \cdot(\beta+\gamma)=\alpha \cdot \beta+\alpha \cdot \gamma
\end{gathered}
$$

Furthermore, for any $\alpha \in \operatorname{GF}(q)$ the elements 0 (additive neutral), 1 (multiplicative neutral), $-\alpha$ (additive inverse) and α^{-1} (multiplicative inverse, for $\alpha \neq 0$) must exist, such that

$$
\begin{gathered}
0+\alpha=\alpha, \quad(-\alpha)+\alpha=0, \quad 0 \cdot \alpha=0 \\
1 \cdot \alpha=\alpha, \quad\left(\alpha^{-1}\right) \cdot \alpha=1
\end{gathered}
$$

- There is only one $\operatorname{GF}(q)$ in the sense that all finite fields of order q are isomorphic;
- any two fields F and G of order q are essentially the same field, they differ only in the way elements are named
- As mentioned, for p a prime number
- $\mathrm{GF}(p)=$ the integers $\{0, \ldots, p-1\}$ modulo p for any non-prime integer q,
- $\operatorname{GF}(q)$ is a finite field $\Longleftrightarrow q=p^{m}$ for some prime p and integer $m \geq 1$
- GF $\left(p^{m}\right), m>1$, can be constructed using an irreducible polynomial $\pi(x)$ of degree m over $\operatorname{GF}(p) \ldots$

Polynomials

- A polynomial $g(x)$ of degree m over a finite field $\mathrm{GF}(q)$ has the form

$$
g(x)=\alpha_{m} x^{m}+\alpha_{m-1} x^{m-1}+\cdots+\alpha_{1} x+\alpha_{0}
$$

where $\alpha_{l} \in \operatorname{GF}(q), l=0, \ldots, m$.

- When $q=p=$ a prime \Rightarrow integer coefficients and operations coefficient-wise modulo p
- $g(x)$ is monic if $\alpha_{m}=1$
- A polynomial $\pi(x)$ over $\mathrm{GF}(p)$ is irreducible over $\mathrm{GF}(p)$ if $\pi(x)$ cannot be written as the product of two other polynomials over $\mathrm{GF}(p)$ (with degrees ≥ 1)

The Field GF $\left(p^{m}\right)$

- Let $\pi(x)$ be an irreducible degree- m polynomial over $\mathrm{GF}(p)$, with p a prime, then
$\mathrm{GF}\left(p^{m}\right)=$ all polynomials over $\mathrm{GF}(p)$ of degree $\leq m-1$, with calculations modulo p and $\pi(x)$
"use the equation $\pi(x)=0$ to reduce x^{m} to degree $<m$ "
- Modulo a polynomial: Two polynomials $a(x)$ and $b(x)$ over $\mathrm{GF}(q)$ are equal modulo a polynomial $p(x)$ if

$$
a(x)=q_{1}(x) p(x)+r(x), \quad b(x)=q_{2}(x) p(x)+r(x)
$$

