Information Theory

Lecture 8

e BCH codes
® BCH codes: MWS7 (not MWS7.7), MWS9.1-5
® Decoding BCH codes: MWS9.6, (MWS9.7)

® Reed-Solomon codes
® RS codes: MWSI10, selected parts
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The BCH Bound

® Theorem: Let C be cyclic of length n with generator
polynomial g(x) over GF(q). Let m be the smallest integer
such that n|¢™ — 1 and let a € GF(¢™) be a primitive nth
root of unity. Then, if for some integers b > 0 and ¢ > 2 all

the elements
ab, ab‘H, Ce ozb+5_2

in GF(¢") are zeros of the code, it holds that dpmi, > 6.

0 — 1 consecutive zeros = dmin > 0
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BCH Codes

® Definition: Consider a cyclic code C of length n over GF(q),
let m be the smallest integer such that n|¢™ — 1 and let
a € GF(¢™) be a primitive nth root of unity. Then C is a
BCH code of designed distance § if for some b > 0 it has
generator polynomial

g(x) = lem {p) (@)p" ) (@)p®+0~2) ()}

® A BCH code is said to be

® narrow sense if b =1
® primitiveif n =¢™ — 1 ( = « primitive in GF(¢™))

® Theorem: A BCH code over GF(q) of length n and designed
distance § has dmi, > § and dimension kK > n —m(J — 1).
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® |n the special case ¢ =2, b=1and 0 = 27 + 1, it holds that
r=n—k<mr

(since the p(¥(x)'s have degree < m, and p®)(z) = p(z))
® True minimum distance dpin:
® Forq=2,b=1,n=2"—1 and 6 = 27 4+ 1 the code has

Amin = 27 + 1 if
t+1 n
> (1) =2
1

i=0
® If b =1 and n = dp for some p, then dpin, = 9
® [fb=1,n=q™ —1and § = ¢P — 1 for some p then, dnin =0
® Ifn=¢qm —1then dmni, < qd —1

Mikael Skoglund, Information Theory 4/14



Parity Check Matrix

® Assume narrow sense and primitive over GF(2) and § = 27+ 1
® Since g(a*) =0fori=1,...,0 — 1, a valid parity check

matrix is
1 « a? a1 ]
1 a3 (&3)2 (a3)n—1
HBCH: 1 045 (&5)2 <a5)n—1
1 a5—2 (046_2)2 (a5—.2)n—1

® That is, the second column = lowest-degree a''s that
correspond to different minimal polynomials
® To get the binary version: replace the a''s with the column
vectors from GF™(2) that represent the coefficients of the
polynomial o' € GF(2™)
® Gives mT binary rows, if m7 > r reduce to get linearly
independent rows

Mikael Skoglund, Information Theory 5/14

Examples

® Binary Hamming code: Narrow sense and primitive binary
BCH code with n = 2™ — 1, for some m > 1, and g(z) = a
primitive polynomial in GF(2™). Designed distance 6 = 3 =
true dmin

® Hamming code over GF(q): A narrow sense and primitive
BCH code, with m smallest integer such that n|¢"™ — 1, m
and g — 1 relatively prime, and g(z) = primitive polynomial in
GF(q™). Designed distance § = 3 = true dmin

® Narrow sense and primitive binary BCH code with § = 5: Let
n = 2" —1 and « primitive in GF(2"). With g(z) =
pW(2)p®)(z) we get § =5. Eg., n=15 —

gz) =1 +z+2H(1 +z+ 2%+ 23+ %)
For this code, n =3-5 — dpin = 9 = 5.
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Decoding Binary BCH Codes

® Let C be a narrow-sense and primitive [n, k,d] BCH code over
GF(2) of designed distance § = 27 + 1.

® Let & € GF(2™) be a primitive nth root of unity, with m the
smallest integer such that n|2™ — 1

® Assume a codeword ¢ = (¢g,...,cp—1) € C is transmitted
over a binary (memoryless) channel, resulting in

y:(y0>"'7yn—l)zc+e

with e = (eq,...,en—1) € GF"(2) of weight w

® Polynomials:

n—1 n—1 n—1
— m _ m _ m
c(z) = ema™, y(@) =Y yma™, e(x) =) emz
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® The error locator polynomial A(x): Assume that the non-zero

components of e are e;,,...,¢e;,, and let
w w
AMz) =[O -X2) =1+ A2
r=1 r=1

where X, = o' are the error locators
® Roots of A(z) in GF(2™) known = e known
® Decoding:
©® Compute A; =y(a?), i=1,...,6 —1
® Find A(2) from Ay,..., As_1
© Compute the roots of A(z) — e(x)

® Will correct all errors of weight w < 7
® Polynomial (not exponential) complexity!
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e Compute A4; =y(at), i=1,...,6 —1:
® Divide y(x) by the minimal polynomial p () of o,

y(z) = q(z)p"(z) + r(z),

and set 2 = o' in the remainder r(z), 4; = y(a*) = r(a?)

® Equivalent to computing the syndrome: with H on the form
Hpcg we get

aslongasw <7=(§—1)/2

® {A;} — A(2) not unique = choose A(z) of lowest degree

® Not feasible for large 7's == use instead the
Berlekamp—Massey algorithm to find A(z). ..
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y(o) e(a) Ay
3 3
y(a?) e(a”) As
y(@® )] le(@®7?)] |42
and then we can get Ay = A?, Ay = A%, ... A5 1 = A%&—n/z
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e Compute A(z) from A;, i=1,...,6 — 1:
® Newton'’s identities (tailored to this problem):
[ 1 0 0 0 O 0 ] A ] Ay
A2 Al 1 0 0 0 A2 A3
Ay As Ay A 1 0 As As
Agy—s Azu-s Ap—3| |Aw-1 A3
| Aow—2  Azw—3 Av-1] | Aw | | Aow—1 ]
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® Find the roots of A(z):
® An error in coordinate i <= A(a™%) = 0;
® simply test A(a™") =0 for i = 1,...,n (Chien search)

® Nonbinary BCH codes: Same principles apply, some additional
theory found in MWS8 needed. . .

® More than 7 errors: The method described only works for
<7 =(0—1)/2 errors, i.e., full nearest neighbor decoding is
not implemented;

® Complete NN decoding algorithms (of polynomial complexity)
known in many cases, but need often be tailored to specific

codes. . .
® Full search NN decoding always possible, but has exponential
complexity. . .
Mikael Skoglund, Information Theory 11/14

Reed-Solomon Codes

e Definition: A Reed—Solomon (RS) code over GF(q) is a BCH
code of length N = g — 1, that is,

g(z) = (z — ®)(x — ") - (& = a”"7?)

for some b > 0 and § > 2, and with « primitive € GF(q)
® Zeros and symbols in the same field, GF(q)
® Dimension K =N —-§+1
® The Singleton bound dpmjn < N —K+1 =
® dmin=20
® maximum distance separable code
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Encoding RS Codes

® RS codes are cyclic: Encode as (non-binary) cyclic codes. ..

® Alternative: Assume an [N, K| RS code, and let

u(x) =ug+urxr + -+ wp_ 1ot

correspond to the message symbols ug,...,ux_1 € GF(q),
then

c(z) = u(l) + u(a)x + u(a2)x2 44 U(OéN_l)ajN_l

is a codeword.
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Decoding RS Codes

® RS codes are BCH codes: Decode as non-binary BCH
codes. ..

® The modern approach: List decoding, e.g. Y. Wu, “New list
decoding algorithms for Reed-Solomon and BCH codes,” IEEE
Transactions on Information Theory, 2008
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