
Information Theory
Lecture 8

• BCH codes
• BCH codes: MWS7 (not MWS7.7), MWS9.1–5
• Decoding BCH codes: MWS9.6, (MWS9.7)

• Reed-Solomon codes
• RS codes: MWS10, selected parts
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The BCH Bound

• Theorem: Let C be cyclic of length n with generator
polynomial g(x) over GF(q). Let m be the smallest integer
such that n|qm − 1 and let α ∈ GF(qm) be a primitive nth
root of unity. Then, if for some integers b ≥ 0 and δ ≥ 2 all
the elements

αb, αb+1, . . . , αb+δ−2

in GF(qm) are zeros of the code, it holds that dmin ≥ δ.

δ − 1 consecutive zeros ⇒ dmin ≥ δ
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BCH Codes

• Definition: Consider a cyclic code C of length n over GF(q),
let m be the smallest integer such that n|qm − 1 and let
α ∈ GF(qm) be a primitive nth root of unity. Then C is a
BCH code of designed distance δ if for some b ≥ 0 it has
generator polynomial

g(x) = lcm {p(b)(x)p(b+1)(x)p(b+δ−2)(x)}

• A BCH code is said to be
• narrow sense if b = 1
• primitive if n = qm − 1 ( =⇒ α primitive in GF(qm))

• Theorem: A BCH code over GF(q) of length n and designed
distance δ has dmin ≥ δ and dimension k ≥ n−m(δ − 1).
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• In the special case q = 2, b = 1 and δ = 2τ + 1, it holds that

r = n− k ≤ mτ

(since the p(i)(x)’s have degree ≤ m, and p(2i)(x) = p(i)(x))
• True minimum distance dmin:

• For q = 2, b = 1, n = 2m − 1 and δ = 2τ + 1 the code has
dmin = 2τ + 1 if

t+1∑

i=0

(
n

i

)
> 2mt

• If b = 1 and n = δp for some p, then dmin = δ
• If b = 1, n = qm − 1 and δ = qp − 1 for some p then, dmin = δ
• If n = qm − 1 then dmin ≤ qδ − 1
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Parity Check Matrix

• Assume narrow sense and primitive over GF(2) and δ = 2τ + 1

• Since g(αi) = 0 for i = 1, . . . , δ − 1, a valid parity check
matrix is

HBCH =




1 α α2 · · · αn−1

1 α3 (α3)2 · · · (α3)n−1

1 α5 (α5)2 · · · (α5)n−1

... · · · ...
1 αδ−2 (αδ−2)2 · · · (αδ−2)n−1




• That is, the second column = lowest-degree αi’s that
correspond to different minimal polynomials

• To get the binary version: replace the αi’s with the column
vectors from GFm(2) that represent the coefficients of the
polynomial αi ∈ GF(2m)
• Gives mτ binary rows, if mτ > r reduce to get linearly

independent rows
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Examples

• Binary Hamming code: Narrow sense and primitive binary
BCH code with n = 2m − 1, for some m ≥ 1, and g(x) = a
primitive polynomial in GF(2m). Designed distance δ = 3 =
true dmin

• Hamming code over GF(q): A narrow sense and primitive
BCH code, with m smallest integer such that n|qm − 1, m
and q − 1 relatively prime, and g(x) = primitive polynomial in
GF(qm). Designed distance δ = 3 = true dmin

• Narrow sense and primitive binary BCH code with δ = 5: Let
n = 2m − 1 and α primitive in GF(2m). With g(x) =
p(1)(x)p(3)(x) we get δ = 5. E.g., n = 15 =⇒

g(x) = (1 + x+ x4)(1 + x+ x2 + x3 + x4)

For this code, n = 3 · 5 =⇒ dmin = δ = 5.
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Decoding Binary BCH Codes

• Let C be a narrow-sense and primitive [n, k, d] BCH code over
GF(2) of designed distance δ = 2τ + 1.

• Let α ∈ GF(2m) be a primitive nth root of unity, with m the
smallest integer such that n|2m − 1

• Assume a codeword c = (c0, . . . , cn−1) ∈ C is transmitted
over a binary (memoryless) channel, resulting in

y = (y0, . . . , yn−1) = c + e

with e = (e0, . . . , en−1) ∈ GFn(2) of weight w

• Polynomials:

c(x) =

n−1∑

m=0

cmx
m, y(x) =

n−1∑

m=0

ymx
m, e(x) =

n−1∑

m=0

emx
m
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• The error locator polynomial Λ(x): Assume that the non-zero
components of e are ei1 , . . . , eiw , and let

Λ(z) =
w∏

r=1

(1−Xrz) = 1 +
w∑

r=1

Λrz
r

where Xr = αir are the error locators
• Roots of Λ(z) in GF(2m) known =⇒ e known

• Decoding:

1 Compute Ai = y(αi), i = 1, . . . , δ − 1
2 Find Λ(z) from A1, . . . , Aδ−1

3 Compute the roots of Λ(z)→ e(x)

• Will correct all errors of weight w ≤ τ
• Polynomial (not exponential) complexity!
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• Compute Ai = y(αi), i = 1, . . . , δ − 1:
• Divide y(x) by the minimal polynomial p(i)(x) of αi,

y(x) = q(x)p(i)(x) + r(x),

and set x = αi in the remainder r(x), Ai = y(αi) = r(αi)

• Equivalent to computing the syndrome: with H on the form
HBCH we get

s = HyT = HeT =




y(α)
y(α3)

...
y(αδ−2)


 =




e(α)
e(α3)

...
e(αδ−2)


 =




A1

A3
...

Aδ−2




and then we can get A2 = A2
1, A4 = A2

2, . . . , Aδ−1 = A2
(δ−1)/2
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• Compute Λ(z) from Ai, i = 1, . . . , δ − 1:
• Newton’s identities (tailored to this problem):




1 0 0 0 0 · · · 0
A2 A1 1 0 0 · · · 0
A4 A3 A2 A1 1 · · · 0
...

...
...

A2w−4 A2w−5 · · · · · · Aw−3

A2w−2 A2w−3 · · · · · · Aw−1







Λ1

Λ2

Λ3
...

Λw−1

Λw




=




A1

A3

A5
...

A2w−3

A2w−1




as long as w ≤ τ = (δ − 1)/2
• {Ai} → Λ(z) not unique =⇒ choose Λ(z) of lowest degree

• Not feasible for large τ ’s =⇒ use instead the
Berlekamp–Massey algorithm to find Λ(z). . .
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• Find the roots of Λ(z):
• An error in coordinate i ⇐⇒ Λ(α−i) = 0;

• simply test Λ(α−i) = 0 for i = 1, . . . , n (Chien search)

• Nonbinary BCH codes: Same principles apply, some additional
theory found in MWS8 needed. . .

• More than τ errors: The method described only works for
≤ τ = (δ − 1)/2 errors, i.e., full nearest neighbor decoding is
not implemented;
• Complete NN decoding algorithms (of polynomial complexity)

known in many cases, but need often be tailored to specific
codes. . .

• Full search NN decoding always possible, but has exponential
complexity. . .
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Reed–Solomon Codes

• Definition: A Reed–Solomon (RS) code over GF(q) is a BCH
code of length N = q − 1, that is,

g(x) = (x− αb)(x− αb+1) · · · (x− αb+δ−2)

for some b ≥ 0 and δ ≥ 2, and with α primitive ∈ GF(q)
• Zeros and symbols in the same field, GF(q)
• Dimension K = N − δ + 1
• The Singleton bound dmin ≤ N −K + 1 =⇒

• dmin = δ
• maximum distance separable code
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Encoding RS Codes

• RS codes are cyclic: Encode as (non-binary) cyclic codes. . .

• Alternative: Assume an [N,K] RS code, and let

u(x) = u0 + u1x+ · · ·+ uK−1x
K−1

correspond to the message symbols u0, . . . , uK−1 ∈ GF(q),
then

c(x) = u(1) + u(α)x+ u(α2)x2 + · · ·+ u(αN−1)xN−1

is a codeword.
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Decoding RS Codes

• RS codes are BCH codes: Decode as non-binary BCH
codes. . .

• The modern approach: List decoding, e.g. Y. Wu, “New list
decoding algorithms for Reed-Solomon and BCH codes,” IEEE
Transactions on Information Theory, 2008
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