Information Theory

Lecture 8

- BCH codes

- BCH codes: MWS7 (not MWS7.7), MWS9.1-5
- Decoding BCH codes: MWS9.6, (MWS9.7)
- Reed-Solomon codes
- RS codes: MWS10, selected parts

The BCH Bound

- Theorem: Let \mathcal{C} be cyclic of length n with generator polynomial $g(x)$ over $\mathrm{GF}(q)$. Let m be the smallest integer such that $n \mid q^{m}-1$ and let $\alpha \in \operatorname{GF}\left(q^{m}\right)$ be a primitive nth root of unity. Then, if for some integers $b \geq 0$ and $\delta \geq 2$ all the elements

$$
\alpha^{b}, \alpha^{b+1}, \ldots, \alpha^{b+\delta-2}
$$

in $\mathrm{GF}\left(q^{m}\right)$ are zeros of the code, it holds that $d_{\text {min }} \geq \delta$.

$$
\delta-1 \text { consecutive zeros } \Rightarrow d_{\min } \geq \delta
$$

BCH Codes

- Definition: Consider a cyclic code \mathcal{C} of length n over $\operatorname{GF}(q)$, let m be the smallest integer such that $n \mid q^{m}-1$ and let $\alpha \in \operatorname{GF}\left(q^{m}\right)$ be a primitive nth root of unity. Then \mathcal{C} is a $B C H$ code of designed distance δ if for some $b \geq 0$ it has generator polynomial

$$
g(x)=\operatorname{lcm}\left\{p^{(b)}(x) p^{(b+1)}(x) p^{(b+\delta-2)}(x)\right\}
$$

- A BCH code is said to be
- narrow sense if $b=1$
- primitive if $n=q^{m}-1\left(\Longrightarrow \alpha\right.$ primitive in $\left.\operatorname{GF}\left(q^{m}\right)\right)$
- Theorem: A BCH code over $\mathrm{GF}(q)$ of length n and designed distance δ has $d_{\text {min }} \geq \delta$ and dimension $k \geq n-m(\delta-1)$.
- In the special case $q=2, b=1$ and $\delta=2 \tau+1$, it holds that

$$
r=n-k \leq m \tau
$$

(since the $p^{(i)}(x)$'s have degree $\leq m$, and $p^{(2 i)}(x)=p^{(i)}(x)$)

- True minimum distance $d_{\text {min }}$:
- For $q=2, b=1, n=2^{m}-1$ and $\delta=2 \tau+1$ the code has $d_{\text {min }}=2 \tau+1$ if

$$
\sum_{i=0}^{t+1}\binom{n}{i}>2^{m t}
$$

- If $b=1$ and $n=\delta p$ for some p, then $d_{\text {min }}=\delta$
- If $b=1, n=q^{m}-1$ and $\delta=q^{p}-1$ for some p then, $d_{\text {min }}=\delta$
- If $n=q^{m}-1$ then $d_{\text {min }} \leq q \delta-1$

Parity Check Matrix

- Assume narrow sense and primitive over $\mathrm{GF}(2)$ and $\delta=2 \tau+1$
- Since $g\left(\alpha^{i}\right)=0$ for $i=1, \ldots, \delta-1$, a valid parity check matrix is

$$
\mathbf{H}_{\mathrm{BCH}}=\left[\begin{array}{ccccc}
1 & \alpha & \alpha^{2} & \cdots & \alpha^{n-1} \\
1 & \alpha^{3} & \left(\alpha^{3}\right)^{2} & \cdots & \left(\alpha^{3}\right)^{n-1} \\
1 & \alpha^{5} & \left(\alpha^{5}\right)^{2} & \cdots & \left(\alpha^{5}\right)^{n-1} \\
\vdots & & \cdots & & \vdots \\
1 & \alpha^{\delta-2} & \left(\alpha^{\delta-2}\right)^{2} & \cdots & \left(\alpha^{\delta-2}\right)^{n-1}
\end{array}\right]
$$

- That is, the second column $=$ lowest-degree α^{i} 's that correspond to different minimal polynomials
- To get the binary version: replace the α^{i} 's with the column vectors from $\mathrm{GF}^{m}(2)$ that represent the coefficients of the polynomial $\alpha^{i} \in \mathrm{GF}\left(2^{m}\right)$
- Gives $m \tau$ binary rows, if $m \tau>r$ reduce to get linearly independent rows

Examples

- Binary Hamming code: Narrow sense and primitive binary BCH code with $n=2^{m}-1$, for some $m \geq 1$, and $g(x)=$ a primitive polynomial in $\operatorname{GF}\left(2^{m}\right)$. Designed distance $\delta=3=$ true $d_{\text {min }}$
- Hamming code over GF(q): A narrow sense and primitive BCH code, with m smallest integer such that $n \mid q^{m}-1, m$ and $q-1$ relatively prime, and $g(x)=$ primitive polynomial in $\mathrm{GF}\left(q^{m}\right)$. Designed distance $\delta=3=$ true $d_{\text {min }}$
- Narrow sense and primitive binary BCH code with $\delta=5$: Let $n=2^{m}-1$ and α primitive in $\operatorname{GF}\left(2^{m}\right)$. With $g(x)=$ $p^{(1)}(x) p^{(3)}(x)$ we get $\delta=5$. E.g., $n=15 \Longrightarrow$

$$
g(x)=\left(1+x+x^{4}\right)\left(1+x+x^{2}+x^{3}+x^{4}\right)
$$

For this code, $n=3 \cdot 5 \Longrightarrow d_{\text {min }}=\delta=5$.

Decoding Binary BCH Codes

- Let \mathcal{C} be a narrow-sense and primitive $[n, k, d] \mathrm{BCH}$ code over $\mathrm{GF}(2)$ of designed distance $\delta=2 \tau+1$.
- Let $\alpha \in \mathrm{GF}\left(2^{m}\right)$ be a primitive nth root of unity, with m the smallest integer such that $n \mid 2^{m}-1$
- Assume a codeword $\mathbf{c}=\left(c_{0}, \ldots, c_{n-1}\right) \in \mathcal{C}$ is transmitted over a binary (memoryless) channel, resulting in

$$
\mathbf{y}=\left(y_{0}, \ldots, y_{n-1}\right)=\mathbf{c}+\mathbf{e}
$$

with $\mathbf{e}=\left(e_{0}, \ldots, e_{n-1}\right) \in \operatorname{GF}^{n}(2)$ of weight w

- Polynomials:

$$
c(x)=\sum_{m=0}^{n-1} c_{m} x^{m}, y(x)=\sum_{m=0}^{n-1} y_{m} x^{m}, e(x)=\sum_{m=0}^{n-1} e_{m} x^{m}
$$

- The error locator polynomial $\Lambda(x)$: Assume that the non-zero components of \mathbf{e} are $e_{i_{1}}, \ldots, e_{i_{w}}$, and let

$$
\Lambda(z)=\prod_{r=1}^{w}\left(1-X_{r} z\right)=1+\sum_{r=1}^{w} \Lambda_{r} z^{r}
$$

where $X_{r}=\alpha^{i_{r}}$ are the error locators

- Roots of $\Lambda(z)$ in $\operatorname{GF}\left(2^{m}\right)$ known $\Longrightarrow \mathbf{e}$ known
- Decoding:
(1) Compute $A_{i}=y\left(\alpha^{i}\right), i=1, \ldots, \delta-1$
(2) Find $\Lambda(z)$ from $A_{1}, \ldots, A_{\delta-1}$
(3) Compute the roots of $\Lambda(z) \rightarrow e(x)$
- Will correct all errors of weight $w \leq \tau$
- Polynomial (not exponential) complexity!
- Compute $A_{i}=y\left(\alpha^{i}\right), i=1, \ldots, \delta-1$:
- Divide $y(x)$ by the minimal polynomial $p^{(i)}(x)$ of α^{i},

$$
y(x)=q(x) p^{(i)}(x)+r(x),
$$

and set $x=\alpha^{i}$ in the remainder $r(x), A_{i}=y\left(\alpha^{i}\right)=r\left(\alpha^{i}\right)$

- Equivalent to computing the syndrome: with \mathbf{H} on the form $\mathbf{H}_{\mathrm{BCH}}$ we get

$$
\mathbf{s}=\mathbf{H y}^{T}=\mathbf{H e}^{T}=\left[\begin{array}{c}
y(\alpha) \\
y\left(\alpha^{3}\right) \\
\vdots \\
y\left(\alpha^{\delta-2}\right)
\end{array}\right]=\left[\begin{array}{c}
e(\alpha) \\
e\left(\alpha^{3}\right) \\
\vdots \\
e\left(\alpha^{\delta-2}\right)
\end{array}\right]=\left[\begin{array}{c}
A_{1} \\
A_{3} \\
\vdots \\
A_{\delta-2}
\end{array}\right]
$$

and then we can get $A_{2}=A_{1}^{2}, A_{4}=A_{2}^{2}, \ldots, A_{\delta-1}=A_{(\delta-1) / 2}^{2}$

- Compute $\Lambda(z)$ from $A_{i}, i=1, \ldots, \delta-1$:
- Newton's identities (tailored to this problem):

$$
\left[\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & \cdots & 0 \\
A_{2} & A_{1} & 1 & 0 & 0 & \cdots & 0 \\
A_{4} & A_{3} & A_{2} & A_{1} & 1 & \cdots & 0 \\
\vdots & & \vdots & & & \vdots & \\
A_{2 w-4} & A_{2 w-5} & \cdots & & & \cdots & A_{w-3} \\
A_{2 w-2} & A_{2 w-3} & \cdots & & & \cdots & A_{w-1}
\end{array}\right]\left[\begin{array}{c}
\Lambda_{1} \\
\Lambda_{2} \\
\Lambda_{3} \\
\vdots \\
\Lambda_{w-1} \\
\Lambda_{w}
\end{array}\right]=\left[\begin{array}{c}
A_{1} \\
A_{3} \\
A_{5} \\
\vdots \\
A_{2 w-3} \\
A_{2 w-1}
\end{array}\right]
$$

as long as $w \leq \tau=(\delta-1) / 2$

- $\left\{A_{i}\right\} \rightarrow \Lambda(z)$ not unique \Longrightarrow choose $\Lambda(z)$ of lowest degree
- Not feasible for large τ 's \Longrightarrow use instead the Berlekamp-Massey algorithm to find $\Lambda(z)$...
- Find the roots of $\Lambda(z)$:
- An error in coordinate $i \Longleftrightarrow \Lambda\left(\alpha^{-i}\right)=0$;
- simply test $\Lambda\left(\alpha^{-i}\right)=0$ for $i=1, \ldots, n$ (Chien search)
- Nonbinary BCH codes: Same principles apply, some additional theory found in MWS8 needed...
- More than τ errors: The method described only works for $\leq \tau=(\delta-1) / 2$ errors, i.e., full nearest neighbor decoding is not implemented;
- Complete NN decoding algorithms (of polynomial complexity) known in many cases, but need often be tailored to specific codes...
- Full search NN decoding always possible, but has exponential complexity...

Reed-Solomon Codes

- Definition: A Reed-Solomon (RS) code over $\operatorname{GF}(q)$ is a BCH code of length $N=q-1$, that is,

$$
g(x)=\left(x-\alpha^{b}\right)\left(x-\alpha^{b+1}\right) \cdots\left(x-\alpha^{b+\delta-2}\right)
$$

for some $b \geq 0$ and $\delta \geq 2$, and with α primitive $\in \operatorname{GF}(q)$

- Zeros and symbols in the same field, $\mathrm{GF}(q)$
- Dimension $K=N-\delta+1$
- The Singleton bound $d_{\min } \leq N-K+1 \Longrightarrow$
- $d_{\text {min }}=\delta$
- maximum distance separable code

Encoding RS Codes

- RS codes are cyclic: Encode as (non-binary) cyclic codes. . .
- Alternative: Assume an $[N, K]$ RS code, and let

$$
u(x)=u_{0}+u_{1} x+\cdots+u_{K-1} x^{K-1}
$$

correspond to the message symbols $u_{0}, \ldots, u_{K-1} \in \mathrm{GF}(q)$, then

$$
c(x)=u(1)+u(\alpha) x+u\left(\alpha^{2}\right) x^{2}+\cdots+u\left(\alpha^{N-1}\right) x^{N-1}
$$

is a codeword.

Decoding RS Codes

- $R S$ codes are $B C H$ codes: Decode as non-binary BCH codes...
- The modern approach: List decoding, e.g. Y. Wu, "New list decoding algorithms for Reed-Solomon and BCH codes," IEEE Transactions on Information Theory, 2008

