Information Theory

Lecture 8

• BCH codes

- BCH codes: MWS7 (not MWS7.7), MWS9.1-5
- Decoding BCH codes: MWS9.6, (MWS9.7)

• Reed-Solomon codes

• RS codes: MWS10, selected parts

Mikael Skoglund, Information Theory

The BCH Bound

Theorem: Let C be cyclic of length n with generator polynomial g(x) over GF(q). Let m be the smallest integer such that n|q^m − 1 and let α ∈ GF(q^m) be a primitive nth root of unity. Then, if for some integers b ≥ 0 and δ ≥ 2 all the elements

$$\alpha^b, \alpha^{b+1}, \dots, \alpha^{b+\delta-2}$$

in $GF(q^m)$ are zeros of the code, it holds that $d_{\min} \ge \delta$.

$$\delta - 1$$
 consecutive zeros $\Rightarrow d_{\min} \ge \delta$

BCH Codes

 Definition: Consider a cyclic code C of length n over GF(q), let m be the smallest integer such that n|q^m - 1 and let α ∈ GF(q^m) be a primitive nth root of unity. Then C is a BCH code of designed distance δ if for some b ≥ 0 it has generator polynomial

$$g(x) = \operatorname{lcm} \left\{ p^{(b)}(x) p^{(b+1)}(x) p^{(b+\delta-2)}(x) \right\}$$

- A BCH code is said to be
 - *narrow sense* if b = 1
 - primitive if $n = q^m 1$ ($\implies \alpha$ primitive in $GF(q^m)$)
- Theorem: A BCH code over GF(q) of length n and designed distance δ has d_{min} ≥ δ and dimension k ≥ n − m(δ − 1).

Mikael Skoglund, Information Theory

• In the special case q = 2, b = 1 and $\delta = 2\tau + 1$, it holds that

$$r = n - k \le m\tau$$

(since the $p^{(i)}(x)$'s have degree $\leq m$, and $p^{(2i)}(x) = p^{(i)}(x)$)

- *True minimum distance* d_{\min} :
 - For $q=2, b=1, n=2^m-1$ and $\delta=2\tau+1$ the code has $d_{\min}=2\tau+1$ if

$$\sum_{i=0}^{t+1} \binom{n}{i} > 2^{mt}$$

- If b = 1 and $n = \delta p$ for some p, then $d_{\min} = \delta$
- If b=1, $n=q^m-1$ and $\delta=q^p-1$ for some p then, $d_{\min}=\delta$
- If $n = q^m 1$ then $d_{\min} \le q\delta 1$

Parity Check Matrix

- Assume narrow sense and primitive over GF(2) and $\delta = 2\tau + 1$
- Since $g(\alpha^i) = 0$ for $i = 1, ..., \delta 1$, a valid parity check matrix is

$$\mathbf{H}_{\mathsf{BCH}} = \begin{bmatrix} 1 & \alpha & \alpha^2 & \cdots & \alpha^{n-1} \\ 1 & \alpha^3 & (\alpha^3)^2 & \cdots & (\alpha^3)^{n-1} \\ 1 & \alpha^5 & (\alpha^5)^2 & \cdots & (\alpha^5)^{n-1} \\ \vdots & \ddots & \vdots \\ 1 & \alpha^{\delta-2} & (\alpha^{\delta-2})^2 & \cdots & (\alpha^{\delta-2})^{n-1} \end{bmatrix}$$

- That is, the second column = lowest-degree α^i 's that correspond to different minimal polynomials
- To get the binary version: replace the α^i 's with the column vectors from $\mathrm{GF}^m(2)$ that represent the coefficients of the polynomial $\alpha^i \in \mathrm{GF}(2^m)$
 - Gives $m\tau$ binary rows, if $m\tau>r$ reduce to get linearly independent rows

Mikael Skoglund, Information Theory

Examples

- Binary Hamming code: Narrow sense and primitive binary BCH code with n = 2^m − 1, for some m ≥ 1, and g(x) = a primitive polynomial in GF(2^m). Designed distance δ = 3 = true d_{min}
- Hamming code over GF(q): A narrow sense and primitive BCH code, with m smallest integer such that n|q^m - 1, m and q - 1 relatively prime, and g(x) = primitive polynomial in GF(q^m). Designed distance δ = 3 = true d_{min}
- Narrow sense and primitive binary BCH code with $\delta = 5$: Let $n = 2^m 1$ and α primitive in $GF(2^m)$. With $g(x) = p^{(1)}(x)p^{(3)}(x)$ we get $\delta = 5$. E.g., $n = 15 \implies$

$$g(x) = (1 + x + x^4)(1 + x + x^2 + x^3 + x^4)$$

For this code, $n = 3 \cdot 5 \implies d_{\min} = \delta = 5$.

Decoding Binary BCH Codes

- Let C be a narrow-sense and primitive [n, k, d] BCH code over GF(2) of designed distance $\delta = 2\tau + 1$.
- Let $\alpha \in GF(2^m)$ be a primitive *n*th root of unity, with *m* the smallest integer such that $n|2^m 1$
- Assume a codeword $\mathbf{c} = (c_0, \dots, c_{n-1}) \in \mathcal{C}$ is transmitted over a binary (memoryless) channel, resulting in

 $\mathbf{y} = (y_0, \dots, y_{n-1}) = \mathbf{c} + \mathbf{e}$

with $\mathbf{e} = (e_0, \dots, e_{n-1}) \in \mathrm{GF}^n(2)$ of weight w

• Polynomials:

$$c(x) = \sum_{m=0}^{n-1} c_m x^m, \ y(x) = \sum_{m=0}^{n-1} y_m x^m, \ e(x) = \sum_{m=0}^{n-1} e_m x^m$$

Mikael Skoglund, Information Theory

• The error locator polynomial $\Lambda(x)$: Assume that the non-zero components of e are e_{i_1}, \ldots, e_{i_w} , and let

$$\Lambda(z) = \prod_{r=1}^{w} (1 - X_r z) = 1 + \sum_{r=1}^{w} \Lambda_r z^r$$

where $X_r = \alpha^{i_r}$ are the *error locators*

- Roots of $\Lambda(z)$ in $\operatorname{GF}(2^m)$ known \implies e known
- Decoding:
 - 1 Compute $A_i = y(\alpha^i), i = 1, \dots, \delta 1$
 - **2** Find $\Lambda(z)$ from $A_1, \ldots, A_{\delta-1}$
 - 3 Compute the roots of $\Lambda(z) \rightarrow e(x)$
 - Will correct all errors of weight $w \leq \tau$
 - Polynomial (not exponential) complexity!

- Compute $A_i = y(\alpha^i), \ i = 1, \dots, \delta 1$:
 - Divide y(x) by the minimal polynomial $p^{(i)}(x)$ of α^i ,

$$y(x) = q(x)p^{(i)}(x) + r(x)$$

and set $x = \alpha^i$ in the remainder r(x), $A_i = y(\alpha^i) = r(\alpha^i)$

• Equivalent to computing the syndrome: with ${\bf H}$ on the form ${\bf H}_{\rm BCH}$ we get

$$\mathbf{s} = \mathbf{H}\mathbf{y}^{T} = \mathbf{H}\mathbf{e}^{T} = \begin{bmatrix} y(\alpha) \\ y(\alpha^{3}) \\ \vdots \\ y(\alpha^{\delta-2}) \end{bmatrix} = \begin{bmatrix} e(\alpha) \\ e(\alpha^{3}) \\ \vdots \\ e(\alpha^{\delta-2}) \end{bmatrix} = \begin{bmatrix} A_{1} \\ A_{3} \\ \vdots \\ A_{\delta-2} \end{bmatrix}$$

and then we can get $A_2 = A_1^2$, $A_4 = A_2^2, \dots, A_{\delta-1} = A_{(\delta-1)/2}^2$

Mikael Skoglund, Information Theory

9/14

- Compute $\Lambda(z)$ from $A_i, i = 1, \ldots, \delta 1$:
 - *Newton's identities* (tailored to this problem):

1	0	0	0	0	•••	0			$\begin{bmatrix} A_1 \end{bmatrix}$
A_2	A_1	1	0	0	•••	0	Λ_2		A_3
A_4	A_3	A_2	A_1	1	•••	0	Λ_3		A_5
		•			·			=	
:					:				
A_{2w-4}	A_{2w-5}	•••			•••	A_{w-3}	Λ_{w-1}		A_{2w-3}
A_{2w-2}	A_{2w-3}	•••			• • •	A_{w-1}	Λ_w		$\left\lfloor A_{2w-1} \right\rfloor$

as long as $w \leq \tau = (\delta - 1)/2$

- $\{A_i\} \to \Lambda(z)$ not unique \implies choose $\Lambda(z)$ of lowest degree
- Not feasible for large τ 's \implies use instead the Berlekamp–Massey algorithm to find $\Lambda(z)...$

- Find the roots of $\Lambda(z)$:
 - An error in coordinate $i \iff \Lambda(\alpha^{-i}) = 0$;
 - simply test $\Lambda(\alpha^{-i}) = 0$ for $i = 1, \dots, n$ (Chien search)
- Nonbinary BCH codes: Same principles apply, some additional theory found in MWS8 needed...
- More than τ errors: The method described only works for $\leq \tau = (\delta 1)/2$ errors, i.e., full nearest neighbor decoding is not implemented;
 - Complete NN decoding algorithms (of polynomial complexity) known in many cases, but need often be tailored to specific codes...
 - Full search NN decoding always possible, but has exponential complexity...

Mikael Skoglund, Information Theory

Reed–Solomon Codes

Definition: A Reed-Solomon (RS) code over GF(q) is a BCH code of length N = q - 1, that is,

$$g(x) = (x - \alpha^b)(x - \alpha^{b+1}) \cdots (x - \alpha^{b+\delta-2})$$

for some $b \ge 0$ and $\delta \ge 2$, and with α primitive $\in GF(q)$

- Zeros and symbols in the same field, GF(q)
- Dimension $K = N \delta + 1$
- The Singleton bound $d_{\min} \leq N K + 1 \implies$
 - $d_{\min} = \delta$
 - maximum distance separable code

Encoding RS Codes

- RS codes are cyclic: Encode as (non-binary) cyclic codes...
- Alternative: Assume an [N, K] RS code, and let

$$u(x) = u_0 + u_1 x + \dots + u_{K-1} x^{K-1}$$

correspond to the message symbols $u_0, \ldots, u_{K-1} \in \mathrm{GF}(q)$, then

$$c(x) = u(1) + u(\alpha)x + u(\alpha^2)x^2 + \dots + u(\alpha^{N-1})x^{N-1}$$

is a codeword.

Mikael Skoglund, Information Theory

Decoding RS Codes

- *RS codes are BCH codes*: Decode as non-binary BCH codes. . .
- The modern approach: *List decoding*, e.g. Y. Wu, "New list decoding algorithms for Reed-Solomon and BCH codes," *IEEE Transactions on Information Theory*, 2008