Information Theory

Lecture 9

®* Error Exponents
® The part on discrete channels of

® R. Gallager, “A Simple Derivation of the Coding Theorem and
Some Applications,” IEEE Trans. on Inform. Theory,
Jan. 1965
® |n addition some concepts found in

® R. Gallager, Information Theory and Reliable Communication,
Wiley 1968
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Discrete Channels (recap)

channel

® |let X and ) be finite sets. A discrete channel is a random
mapping from X" to )" described by the conditional pmfs
pr(yl|xt) foralln > 1, 2 € X™ and y" € Y™

® The channel is (stationary and) memoryless if

n

pa(il2l) = ] pymlem), n=2,3,...

m=1

® A discrete memoryless channel (DMC) is completely described
by the triple (X, p(y|z),))
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Block Channel Codes (recap)

encoder channel decoder
w 7 (w) Yy w
— ! - e I6; ——
® Define an (M, n) block channel code for a DMC
(X, p(ylz), V) by
@ An index set Ty = {1,..., M}
® An encoder mapping o : Ipy — X™. The set
Cé{ Tal = ali), Vz’EIM}
of codewords is called the codebook.
© A decoder mapping 5 : Y" — Iy, as characterized by the
decoding subsets
V@) =yt € Y" : Bly}) =14}, i=1,....M
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® The rate of the code is

a log M
n

R

[bits per channel use]

® A code is often represented by its codebook only; the decoder
can often be derived from the codebook using a specific rule
(joint typicality, maximum a posteriori, maximum
likelihood,. . .)

® Assume, in the following, that w € Zj; is drawn according to
p(m) = Pr(w =m)
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Error Probabilities (recap)

® For a given code
® Conditional

Pom= Y palyllai(m)) (=Am in CT)
yr e (m))e

® Maximal

e,max

Poax = P™_ = max P, ,, (: A in CT)

® QOverall/average/total

m=1
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“Random Coding” (recap)
® Assume that the M codewords z7(m), m=1,..., M, of a

codebook C are drawn independently according to
gn(zh), 27 € X" = P(C) = qu(27(1)) - - g (2T (M)).
® Error probabilities over an ensemble of codes,
® Conditional

pe,m = Z P(C)Pe,m(c)
c
® QOverall/average/total

P. =3 P(O)P.(C)
C

® Note: In addition to C a decoder needs to be specified
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The Channel Coding Theorem (recap)

® A rate R is achievable if there exists a sequence of (M, n)

codes, with M = [2"7], such that Pe( H)lax — 0 as n — 0.
Capacity C' is the supremum of all achievable rates.

® For a discrete memoryless channel,

C =maxI(X;Y)
p(z)

® Previous proof (in CT) based on typical sequences —>

limited insight, e.g., into how fast Pe(rr)lax — 0 asn — oo for
R<C..

® |n fact, for any n > 0,

pn) 4. 9—nE(R)

e, max

where E,.(R) is the random coding exponent
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Exponential Bounds

® A code C(n, R) of Iength n and rate R

® Assume p(m) = , a DMC and consider the average error

probability M
1
(n) — —_ E
P =131 _IP““”’”

® Bounds easily extended to Pe(fﬁ)lax
® Non-zero lower bound may not exist for arbitrary p(m)

® Upper-bounds (there exists a code)
Pe(”) < 27" Pmin(R) any n > 0

® |ower-bounds (for all codes)

P > 97 nEmax(R) a9 5 o0
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Reliability Function, Error Exponents

® The reliability function of a channel,

_logpe*(an)

Y

E(R) = lim

n—r00 n

where P¥(n, R) is the minimum over all codes C(n, R)

® Lower bounds to E(R) yield upper bounds to p™ (as
n — 0o)

® “random coding” E,.(R) and “expurgated” E..(R) exponents

® Upper bounds to F(R) yield lower bounds to pi™ (as
n — 0o)

® ‘“sphere-packing” E,,(R) and “straight-line” Eg(R)
exponents
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® With Enax = max (Ey, Eey) and Enin = min (Egp, Eg)
EmaX(R) S E(R) S Emin(R>

® The critical rate R, is the smallest R in [0, C] such that
FEnax(R) = Enin(R) = E(R) for Rey < R < C
® For R € [R,C) the exponent E(R) > 0 in

P 27" ER) 55 n — 00

for the best possible existing code is known!
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Decoding Rules

* Joint typicality (AE") jointly typical set)
Yim) = {y € V" : (af(m'),9f) € AT = m' =m}
® Maximum a posteriori (minimum error probability)

V'(m) ={y} € Y" : m = argmax Pr(m/|y}])}

m/

® Maximum likelihood (a priori unknown / unmeaningful /
uniform)

Y'(m) ={y1' € Y" : m = argmaxpy (y1' |7 (m))}

m

® To derive existence results it suffices to consider a specific rule
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Two Codewords

® Two codewords, C = {z7(1),27(2)}, and any channel
pn(y1'|2t)
® Assume maximum likelihood decoding,

Y1) = {yr € V" i palyr|27 (1)) > pa(p1]27(2))}

Hence, for any s € (0,1) it holds that

Pep = Z P (1|27 (1))

yreyn(l)e

< Y palyRlet (D)) Cpalyt]at(2)°
yreyn(l)e

< 3 PRl ()) Pyt (2)°
yreyn

® An equivalent bound applies to P >
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® For a memoryless channel we get (with m = (m mod 2) + 1)

Pen < T D plyiles(m)' = p(yilas(m))® = ] [ gals). m=1,2
1=1

1=1y; €Y

® For a BSC(¢) with two codewords at distance d

P, < min)ﬁgn(s) = <2 e(l— e))d m=1,2
i=1

= For a "best” pair of codewords (d = n)
P < (2 e(1— e)> m=1,2
= For a "typical” pair of codewords (d = n/2)

n/2
P < (2 e(1— e)) m=1,2
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Ensemble Average — Two Codewords

® Pick a probability assignment ¢, on X", and choose M
codewords in C = {z7(1),...,27 (M)} independently;

M
PC) = ] an(at(m))
m=1

® For memoryless channels, we take ¢, of the form

gn(27) = H%(%’)
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® Thus, for m = 1,2 (with m = (m mod 2) + 1)

pe,m — Z Z Qn(xl (2>)Pe,m

P (l)exXn o (2)62("

> Y. @t (m))palytlat(m))'

yreym [z (m)exn

IA

| D an(@l(m)palyTet ()’

x(m)exn

Minimum over s € (0,1) at s=1/2 =

2
Pe,m < § E 4n 331 ’\/pn Y1 |$1>
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® For a memoryless channel
2 n
Pe,m < E ( g Q1 P1 y|$)> m = 1,2
yeYn \zeX

® In particular, for a BSC(¢€) with ¢1(z) = 1/2

Pem_{ (\f+\/ﬁ)} m=1,2

— Solid: % (ve+ \/1——6)2 (random)

1/2
ol — Dashed: (2 e(l— e)) (typical)

0.2/ — Dotted: 2/€(1 —¢) (best)

0.1 0.2 0.3 0.4 0.5
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Alternative Derivation — Still Two Codewords

® Examine the ensemble average directly

Por= Y, au(@?(1) Y palyflai(1) Pr(y € Y"(1)%)
P (l)exn yreyn
® Since the codewords are randomly chosen

Pr(yy € Y*(1)9) = >, qn(27(2))

27 (2): pn(y7 27 (1) <pn(v7'[27 (2))

> an(af(2) [pn(y’flx’f@))r

IA

® Substituting this into the first equation yields the result

® This method generalizes more easily!
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Bound on P,,, — Many Codewords

e As before,

Pon= Y au(@l(m)) D pa(y?|2f(m)) Pr(yy € Y"(m)°)

z(m)exn yreyn

® For M > 2 codewords, any p € [0,1] and s > 0

Pr(yf € Y"(m)) < Pr( [ {4 € Y"(m)})

m'#£m
- p
< | 'S Pr(yp € yh(m))
| m/#m
' Wy |
ny Pn(Y7127)’
x’erXn Y pa(yplat (m))®
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® Substitute back into the first equation

Pow < M=1 3 | S au(@Dpalyilal)®

yreyn | zteixn

<> an(@(m)palyilat (m))!

z(m)exn

Minimize over s > 0 (see HW prob.) —

14p
D p n n|..n\1/(14+p
Pon < (M =17 3" | D7 gul@)pa(yplah)t/O+0)
yreym | zeixn
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® For memoryless channels
n

1+p
pe,m S (M Z [Z QI pl y\x 1/(1+p)]

ye) LxzeX
® Define
1+p
Eo(p,q1) = —10gz (Z Q1($)p1(y|33)1/(1+p)>
ye)y \zxekX
® Using M — 1 < 2™ we get

P, < 2 nEo(p.q1)—ph]
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Random Coding Exponent

® To minimize the upper-bound on Pe,m, define the random
coding (Gallager) exponent

Er(R) = max (Eo(p, q1) — pR)

® Thus, for the ensemble average error probabilities
pem < 2—nE7~(R) = Pe(n) < 2_nE7"(R)

® Since at least one code in the ensemble has error probability
Pe(n) (or less), there exists a “good” code satisfying

Pe(n) < 2—nEr(R)

® But, this says nothing about P, ,,!
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 To bound P. ,, take a code with 2M (= 2[2"#]) codewords,
which satisfies the inequality for equiprobable messages

2M

1 log 2 M
) _ L 5, (lo82M )
P = or mzzlpe,m <2

® Throw away the worst M codewords including all that satisfy
Py > 2 2 B ()

® Since the decoding subsets didn’t get smaller, the remaining
M codewords satisfy (since p € [0, 1])

Pe m S 2 . 2—7”LET(R+%) S 2 . 2—n[ET(R)—%]
= There exists at least one code such that for any n > 0

vm: Pe;m <4- 2—nE»,~(R) — Pe,max <4. 2—nEr(R)
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The Coding Theorem Based on E,.(R)

® Theorem: For any DMC (X, p(y|x),)) the random coding
exponent F,.(R) is a convex, decreasing and positive function

of R for 0 < R < C where

C=maxI(X;Y)
p(z)

where
p(ylx)

p(y)

I(X;Y) =) p(ylz)p(x)log

with p(y) = >, p(y|x)p(z), and where the maximum is over
all possible pmf's on X,
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Examples of E,.(R)
® Binary symmetric channel with crossover probability €

1—210g(\/5+\/1—6) — R R< R

E.(R)=< d(h~'(1— R)|e) Re<R<C
0 C<R

where

Ro=1—h (#) (critical rate)

C'=1-h(e) (capacity)

h(e) = —eloge — (1 —€)log(1 —€) (binary entropy)

d(5|le) = dlog 2 + (1 — &) log i=2  (binary relative entropy)
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® Very noisy channels

piz) = p(y) (1 +exy), ey < 1

Using second-order approximation in € ,

¢—R R<¢
2
ER)~{ (VC-VR) §$<Rr<cC
0 C<R
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Some Comments on Other Error Exponents

® Expurgated exponent E.,
® strengthens F, for small rates

® generally agrees with E,. on part of its linear portion (R < Rc,)
® can be infinite!

® Sphere-packing exponent Ej,

® agrees with E, on its non-linear part (R > R)
® can also be infinite!

® Straight-line exponent E;
® line through (0, E.;(0)), tangent to Ey, (when E.,(0) < c0)
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Large Deviations Theory. ..

® Tight connections to large deviations theory, Chernoff
bounds,. ..
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A Typical Scenario — BSC(0.05)

1.2} ® curves top-to-bottom
* Eqp(R)
® Fer(R)
* E(R)
0. .
® marks right-to-left
0. ® capacity
® critical rate
e 77
O . H-
0.
0.8 1
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Rates Above Capacity

Theorem (Wolfowitz (1957)) For an arbitrary DMC of capacity
C bits and any length n, rate R > C code

4A n(R—C)
o MEZC)

2

pn sy M
c = n(R — C)?

where A is a constant depending on the channel but not on n or R.
® Check, e.g., for R=C + d0/y/n with any 6 > vV8A 4+ 2 —
P™ >0, Vn >0
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