
Information Theory
Lecture 9

• Error Exponents
• The part on discrete channels of

• R. Gallager, “A Simple Derivation of the Coding Theorem and
Some Applications,” IEEE Trans. on Inform. Theory,
Jan. 1965

• In addition some concepts found in
• R. Gallager, Information Theory and Reliable Communication,

Wiley 1968
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Discrete Channels (recap)

channel

Xn Yn

• Let X and Y be finite sets. A discrete channel is a random
mapping from X n to Yn described by the conditional pmfs
pn(yn1 |xn1 ) for all n ≥ 1, xn1 ∈ X n and yn1 ∈ Yn.

• The channel is (stationary and) memoryless if

pn(yn1 |xn1 ) =

n∏

m=1

p(ym|xm), n = 2, 3, . . .

• A discrete memoryless channel (DMC) is completely described
by the triple (X , p(y|x),Y)
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Block Channel Codes (recap)

channelencoder decoder
ω ω̂xn

1 (ω) Y n
1

α β

• Define an (M,n) block channel code for a DMC
(X , p(y|x),Y) by

1 An index set IM , {1, . . . ,M}
2 An encoder mapping α : IM → Xn. The set

C ,
{
xn1 : xn1 = α(i), ∀ i ∈ IM

}

of codewords is called the codebook.
3 A decoder mapping β : Yn → IM , as characterized by the

decoding subsets

Yn(i) = {yn1 ∈ Yn : β(yn1 ) = i}, i = 1, . . . ,M
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• The rate of the code is

R , logM

n
[bits per channel use]

• A code is often represented by its codebook only; the decoder
can often be derived from the codebook using a specific rule
(joint typicality, maximum a posteriori, maximum
likelihood,. . . )

• Assume, in the following, that ω ∈ IM is drawn according to
p(m) = Pr(ω = m)
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Error Probabilities (recap)

• For a given code
• Conditional

Pe,m =
∑

yn1 ∈(Yn(m))c

pn(yn1 |xn1 (m)) (= λm in CT)

• Maximal

Pe,max = P (n)
e,max = max

m
Pe,m

(
= λ(n) in CT

)

• Overall/average/total

Pe = P (n)
e =

M∑

m=1

p(m)Pe,m
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“Random Coding” (recap)

• Assume that the M codewords xn1 (m), m = 1, . . . ,M , of a
codebook C are drawn independently according to
qn(xn1 ), xn1 ∈ X n =⇒ P (C) = qn

(
xn1 (1)

)
· · · qn

(
xn1 (M)

)
.

• Error probabilities over an ensemble of codes,
• Conditional

P̄e,m =
∑

C
P (C)Pe,m(C)

• Overall/average/total

P̄e =
∑

C
P (C)Pe(C)

• Note: In addition to C a decoder needs to be specified
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The Channel Coding Theorem (recap)

• A rate R is achievable if there exists a sequence of (M,n)

codes, with M = d2nRe, such that P
(n)
e,max → 0 as n→∞.

Capacity C is the supremum of all achievable rates.

• For a discrete memoryless channel,

C = max
p(x)

I(X;Y )

• Previous proof (in CT) based on typical sequences =⇒
limited insight, e.g., into how fast P

(n)
e,max → 0 as n→∞ for

R < C. . .
• In fact, for any n > 0,

P (n)
e,max < 4 · 2−nEr(R)

where Er(R) is the random coding exponent
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Exponential Bounds

• A code C(n,R) of length n and rate R

• Assume p(m) = M−1, a DMC and consider the average error
probability

P (n)
e =

1

M

M∑

m=1

Pe,m

• Bounds easily extended to P
(n)
e,max

• Non-zero lower bound may not exist for arbitrary p(m)

• Upper-bounds (there exists a code)

P (n)
e ≤ 2−nEmin(R), any n > 0

• Lower-bounds (for all codes)

P (n)
e ≥ 2−nEmax(R), as n→∞
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Reliability Function, Error Exponents

• The reliability function of a channel,

E(R) = lim
n→∞

− logP ∗e (n,R)

n
,

where P ∗e (n,R) is the minimum over all codes C(n,R)

• Lower bounds to E(R) yield upper bounds to P
(n)
e (as

n→∞)
• “random coding” Er(R) and “expurgated” Eex(R) exponents

• Upper bounds to E(R) yield lower bounds to P
(n)
e (as

n→∞)
• “sphere-packing” Esp(R) and “straight-line” Esl(R)

exponents
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• With Emax = max (Er, Eex) and Emin = min (Esp, Esl)

Emax(R) ≤ E(R) ≤ Emin(R)

• The critical rate Rcr is the smallest R in [0, C] such that
Emax(R) = Emin(R) = E(R) for Rcr ≤ R ≤ C;
• For R ∈ [Rcr, C) the exponent E(R) > 0 in

P (n)
e ≈ 2−nE(R) as n→∞

for the best possible existing code is known!

Mikael Skoglund, Information Theory 10/29



Decoding Rules

• Joint typicality (A
(n)
ε jointly typical set)

Yn(m) = {yn1 ∈ Yn : (xn1 (m′), yn1 ) ∈ A(n)
ε ⇐⇒ m′ = m}

• Maximum a posteriori (minimum error probability)

Yn(m) = {yn1 ∈ Yn : m = argmax
m′

Pr(m′|yn1 )}

• Maximum likelihood (a priori unknown / unmeaningful /
uniform)

Yn(m) = {yn1 ∈ Yn : m = argmax
m′

pn(yn1 |xn1 (m′))}

• To derive existence results it suffices to consider a specific rule
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Two Codewords

• Two codewords, C = {xn1 (1), xn1 (2)}, and any channel
pn(yn1 |xn1 )

• Assume maximum likelihood decoding,

Yn(1) = {yn1 ∈ Yn : pn(yn1 |xn1 (1)) > pn(yn1 |xn1 (2))}

Hence, for any s ∈ (0, 1) it holds that

Pe,1 =
∑

yn1 ∈Yn(1)c

pn(yn1 |xn1 (1))

≤
∑

yn1 ∈Yn(1)c

pn(yn1 |xn1 (1))1−spn(yn1 |xn1 (2))s

≤
∑

yn1 ∈Yn

pn(yn1 |xn1 (1))1−spn(yn1 |xn1 (2))s

• An equivalent bound applies to Pe,2
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• For a memoryless channel we get (with m̄ = (m mod 2) + 1)

Pe,m ≤
n∏

i=1

∑

yi∈Y
p(yi|xi(m))1−sp(yi|xi(m̄))s =

n∏

i=1

gn(s), m = 1, 2

• For a BSC(ε) with two codewords at distance d

Pe,m ≤ min
s∈(0,1)

n∏

i=1

gn(s) =
(

2
√
ε(1− ε)

)d
m = 1, 2

⇒ For a “best” pair of codewords (d = n)

Pe,m ≤
(

2
√
ε(1− ε)

)n
m = 1, 2

⇒ For a “typical” pair of codewords (d = n/2)

Pe,m ≤
(

2
√
ε(1− ε)

)n/2
m = 1, 2

Mikael Skoglund, Information Theory 13/29

Ensemble Average – Two Codewords

• Pick a probability assignment qn on X n, and choose M
codewords in C = {xn1 (1), . . . , xn1 (M)} independently;

P (C) =

M∏

m=1

qn(xn1 (m))

• For memoryless channels, we take qn of the form

qn(xn1 ) =
n∏

i=1

q1(xi)

Mikael Skoglund, Information Theory 14/29



• Thus, for m = 1, 2 (with m̄ = (m mod 2) + 1)

P̄e,m =
∑

xn1 (1)∈Xn

∑

xn1 (2)∈Xn

qn(xn1 (1))qn(xn1 (2))Pe,m

≤
∑

yn1 ∈Yn


 ∑

xn1 (m)∈Xn

qn(xn1 (m))pn(yn1 |xn1 (m))1−s




×


 ∑

xn1 (m̄)∈Xn

qn(xn1 (m̄))pn(yn1 |xn1 (m̄))s




Minimum over s ∈ (0, 1) at s = 1/2 =⇒

P̄e,m ≤
∑

yn1 ∈Yn


 ∑

xn1∈Xn

qn(xn1 )
√
pn(yn1 |xn1 )




2
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• For a memoryless channel

P̄e,m ≤




∑

y∈Yn

(∑

x∈X
q1(x)

√
p1(y|x)

)2




n

m = 1, 2

• In particular, for a BSC(ε) with q1(x) = 1/2

P̄e,m ≤
{

1

2

(√
ε+
√

1− ε
)2
}n

m = 1, 2

0.1 0.2 0.3 0.4 0.5

0.2

0.4

0.6

0.8

1

– Solid: 1
2

(√
ε+
√

1− ε
)2

(random)

– Dashed:
(

2
√
ε(1− ε)

)1/2
(typical)

– Dotted: 2
√
ε(1− ε) (best)
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Alternative Derivation — Still Two Codewords

• Examine the ensemble average directly

P̄e,1 =
∑

xn1 (1)∈Xn

qn(xn1 (1))
∑

yn1 ∈Yn

pn(yn1 |xn1 (1)) Pr(yn1 ∈ Yn(1)c)

• Since the codewords are randomly chosen

Pr(yn1 ∈ Yn(1)c) =
∑

xn1 (2) : pn(yn1 |xn1 (1))≤pn(yn1 |xn1 (2))

qn(xn1 (2))

≤
∑

xn1 (2)∈Xn

qn(xn1 (2))

[
pn(yn1 |xn1 (2))

pn(yn1 |xn1 (1))

]s

• Substituting this into the first equation yields the result

• This method generalizes more easily!
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Bound on P̄e,m – Many Codewords

• As before,

P̄e,m =
∑

xn1 (m)∈Xn

qn(xn1 (m))
∑

yn1 ∈Yn

pn(yn1 |xn1 (m)) Pr(yn1 ∈ Yn(m)c)

• For M ≥ 2 codewords, any ρ ∈ [0, 1] and s > 0

Pr(yn1 ∈ Yn(m)c) ≤ Pr(
⋃

m′ 6=m
{yn1 ∈ Yn(m′)})

≤


 ∑

m′ 6=m
Pr(yn1 ∈ Yn(m′))



ρ

≤


(M − 1)

∑

xn1∈Xn

qn(xn1 )
pn(yn1 |xn1 )s

pn(yn1 |xn1 (m))s



ρ
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• Substitute back into the first equation

P̄e,m ≤ (M − 1)ρ
∑

yn1 ∈Yn


 ∑

xn1∈Xn

qn(xn1 )pn(yn1 |xn1 )s



ρ

×


 ∑

xn1 (m)∈Xn

qn(xn1 (m))pn(yn1 |xn1 (m))1−sρ




Minimize over s > 0 (see HW prob.) =⇒

P̄e,m ≤ (M − 1)ρ
∑

yn1 ∈Yn


 ∑

xn1∈Xn

qn(xn1 )pn(yn1 |xn1 )1/(1+ρ)




1+ρ
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• For memoryless channels

P̄e,m ≤ (M − 1)ρ


∑

y∈Y

[∑

x∈X
q1(x)p1(y|x)1/(1+ρ)

]1+ρ


n

• Define

E0(ρ, q1) , − log
∑

y∈Y

(∑

x∈X
q1(x)p1(y|x)1/(1+ρ)

)1+ρ

• Using M − 1 < 2nR, we get

P̄e,m ≤ 2−n[E0(ρ,q1)−ρR]
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Random Coding Exponent

• To minimize the upper-bound on P̄e,m, define the random
coding (Gallager) exponent

Er(R) = max
ρ,q1

(E0(ρ, q1)− ρR)

• Thus, for the ensemble average error probabilities

P̄e,m ≤ 2−nEr(R) =⇒ P̄ (n)
e ≤ 2−nEr(R)

• Since at least one code in the ensemble has error probability

P̄
(n)
e (or less), there exists a “good” code satisfying

P (n)
e ≤ 2−nEr(R)

• But, this says nothing about Pe,m!
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• To bound Pe,m take a code with 2M
(
= 2d2nRe

)
codewords,

which satisfies the inequality for equiprobable messages

P (n)
e =

1

2M

2M∑

m=1

Pe,m ≤ 2−nEr( log 2M
n

)

• Throw away the worst M codewords including all that satisfy

Pe,m ≥ 2 · 2−nEr( 1+logM
n

)

• Since the decoding subsets didn’t get smaller, the remaining
M codewords satisfy (since ρ ∈ [0, 1])

Pe,m ≤ 2 · 2−nEr(R+ 1
n

) ≤ 2 · 2−n[Er(R)− 1
n ]

⇒ There exists at least one code such that for any n > 0

∀m : Pe,m ≤ 4 · 2−nEr(R) =⇒ Pe,max ≤ 4 · 2−nEr(R)
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The Coding Theorem Based on Er(R)

• Theorem: For any DMC (X , p(y|x),Y) the random coding
exponent Er(R) is a convex, decreasing and positive function
of R for 0 ≤ R < C where

C = max
p(x)

I(X;Y )

where

I(X;Y ) =
∑

x,y

p(y|x)p(x) log
p(y|x)

p(y)

with p(y) =
∑

x p(y|x)p(x), and where the maximum is over
all possible pmf’s on X .
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Examples of Er(R)

• Binary symmetric channel with crossover probability ε

Er(R) =





1− 2 log
(√
ε+
√

1− ε
)
−R R ≤ Rcr

d(h−1(1−R)‖ε) Rcr ≤ R ≤ C
0 C ≤ R

where
Rcr = 1− h

( √
ε√

ε+
√
1−ε

)
(critical rate)

C = 1− h(ε) (capacity)
h(ε) = −ε log ε− (1− ε) log(1− ε) (binary entropy)

d(δ‖ε) = δ log δ
ε + (1− δ) log 1−δ

1−ε (binary relative entropy)
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• Very noisy channels

p1(y|x) = p(y)(1 + εx,y), |εx,y| � 1

Using second-order approximation in εx,y

Er(R) ≈





C
2 −R R < C

4(√
C −

√
R
)2

C
4 ≤ R ≤ C

0 C ≤ R
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Some Comments on Other Error Exponents

• Expurgated exponent Eex
• strengthens Er for small rates
• generally agrees with Er on part of its linear portion (R < Rcr)
• can be infinite!

• Sphere-packing exponent Esp
• agrees with Er on its non-linear part (R > Rcr)
• can also be infinite!

• Straight-line exponent Esl
• line through (0, Eex(0)), tangent to Esp (when Eex(0) <∞)
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Large Deviations Theory. . .

• Tight connections to large deviations theory, Chernoff
bounds,. . .
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A Typical Scenario – BSC(0.05)

• curves top-to-bottom

• Esp(R)
• Eex(R)
• Er(R)

• marks right-to-left

• capacity
• critical rate
• ??
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Rates Above Capacity

Theorem (Wolfowitz (1957)) For an arbitrary DMC of capacity
C bits and any length n, rate R > C code

P (n)
e ≥ 1− 4A

n(R− C)2
− 2−

n(R−C)
2

where A is a constant depending on the channel but not on n or R.

• Check, e.g., for R = C + δ/
√
n with any δ >

√
8A+ 2 =⇒

P
(n)
e > 0, ∀n > 0
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