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Problem 3.1: Define/motivate the concepts σ-algebra, measure, measure space, measurable
space and measurable set.

Problem 3.2: On the real line, define/motivate Borel measurable set and Borel measurable
function. Discuss the relation between Borel measurable and continuous functions.

Problem 3.3: Given a general measure space, describe what it means for a real-valued func-
tion to be measurable. Given two general measure spaces, define the concept of measurable
transformation between the spaces.

Problem 3.4: Define and discuss the concepts almost everywhere (a.e.), convergence a.e., and
convergence in measure. For a finite measure, prove that convergence a.e. implies convergence
in measure (you can use the result in Problem 3.5 without proof). Describe a counterexample
showing that the reverse statement does not hold in general.

Problem 3.5: Given a measure space (Ω,A, µ), let {En} be an infinite sequence of A-
measurable sets, with µ(∪nEn) < ∞. Prove that
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You can use the following facts without proof:

• For Ai ∈ A such that A1 ⊃ A2 ⊃ · · · and µ(A1) < ∞ it holds that
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• For Bi ∈ A such that B1 ⊂ B2 ⊂ · · · it holds that
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