Probability and Random Processes 2024

Assignment 6 Assigned: Thursday, February 22, 2024 Due: Thursday, March 7, 2024

M. Skoglund

Problem 6.1: Define and explain the concepts total variation and bounded variation.

Problem 6.2: Define and explain the concept of an absolutely continuous real-valued function.

Problem 6.3: Define and explain the concepts discrete, continuous and absolutely continuous random variable.

Problem 6.4: Define the Radon–Nikodym derivative and relate it to the concept of an absolutely continuous random variable.

Problem 6.5: Assume that $\{f_n\}$ is a sequence of functions that converges pointwise to $f < \infty$. Prove that $V_a^b f \leq \liminf_n V_a^b f_n$.

Problem 6.6: Give an example of a function f that is absolutely continuous on [0, 1] but is such that f' is not Riemann integrable on [0, 1]. That is, for such a function

$$f(x) = f(0) + \int_0^x f'(t)dt$$

does not hold when the integral is a Riemann integral.

Problem 6.7: Let X be a discrete random variable on (Ω, \mathcal{A}, P) with probability mass function $p_X(x) = P(\{\omega : X = x\})$. Let μ be counting measure on $(\mathbb{R}, \mathcal{B})$, that is $\mu(B) = |B|$ (cardinality) for $B \in \mathcal{B}$. Show that $\mu_X \ll \mu$ and that

$$p_X = \frac{d\mu_X}{d\mu}$$