Probability and Random Processes Spring semester, 2024

Assignment 9 Assigned: Thursday, March 21, 2024 Due: Thursday, April 11, 2024

M. Skoglund

Problem 9.1: Given a set Ω , a semialgebra \mathcal{C} of subsets and a pre-measure m on \mathcal{C} ; explain the steps that need to be taken to extend m to a measure μ on a σ -algebra that contains \mathcal{C} .

Problem 9.2: Given the measure constructed in problem 1, state a condition (involving C and m) that ensures that there exists a unique extension of m from C to $\sigma(C)$.

Problem 9.3: Introduce and explain the concept product measure space.

Problem 9.4: Let \mathcal{I} be the collection of all intervals $\subset \mathbb{R}$ and let $\ell(I) =$ length of $I \in \mathcal{I}$. Show that λ (Lebesgue measure) is the unique extension of ℓ from \mathcal{I} to \mathcal{L} (the Lebesgue sets). Note that $\mathcal{B} = \sigma(I) \neq \mathcal{L}$ (where $\mathcal{B} =$ the Borel sets).

Problem 9.5: Again, let \mathcal{I} be the collection of all intervals $\subset \mathbb{R}$. Given a nonnegative function $g: \mathbb{R} \to \mathbb{R}^+$ that satisfies $\int_{(-\infty,n)} gd\lambda < \infty$ for $n = 0, 1, 2, \ldots$, let

$$m(I) = \int_I g d\lambda$$

for any $I \in \mathcal{I}$. Show that there is a unique extension μ of m from \mathcal{I} to \mathcal{B} (the Borel sets) that satisfies $\mu(B) = \int_B g d\lambda$ for $B \in \mathcal{B}$.

Problem 9.6: Let $\mathcal{B}_2 =$ smallest σ -algebra of subsets of \mathbb{R}^2 that contains all the open sets in \mathbb{R}^2 . Show that $\mathcal{B}_2 = \mathcal{B} \times \mathcal{B}$. Assume that μ and ν are two finite measures on \mathcal{B}_2 , and that

$$\mu(A \times B) = \nu(A \times B)$$

for all $A, B \in \mathcal{B}$, prove that $\mu = \nu$.