Probability and Random Processes Lecture 1

• Lebesgue measure on the real line

Mikael Skoglund, Probability...

Measure Size/Length of Real Sets

- I an interval of the form [a, b], [a, b), (a, b] or (a, b), for $b \ge a$
- $\ell(I) = b a = \text{length of } I$
 - in particular, $\ell(I) = 0$ if a = b
- How do we generalize "length" to sets which are more complicated?
- For any generalization, it would be reasonable to require
 - $\operatorname{length}(A) \ge 0$ for all A
 - length(\emptyset) = 0
 - $length(A) = \ell(A)$ if A is an interval
 - $\operatorname{length}(B) = \operatorname{length}(B_1) + \operatorname{length}(B_2)$ if $B = B_1 \cup B_2$ and $B_1 \cap B_2 = \emptyset$

• Clue: for any open set *B*, this should work

$$\mathsf{length}(B) = \sum_i \ell(I_i)$$

where $\{I_i\}$ are the open intervals that form $B \Rightarrow$ we know how to measure open sets

- Define 'length(B)' as above if B is open
- \Rightarrow Lebesgue outer measure, for any $A \subset \mathbb{R}$ define

 $\lambda^*(A) = \inf \text{length}(B)$ over all open B such that $A \subset B$

Mikael Skoglund, Probability...

- Can λ^* work as the extension of length we are looking for?
 - $\lambda^*(A) \ge 0$ OK
 - $\lambda^*(A) = \ell(A)$ if A is an interval OK
 - $\lambda^*(B) = \lambda^*(B_1) + \lambda^*(B_2)$ if $B = B_1 \cup B_2$ and $B_1 \cap B_2 = \emptyset$ not OK
- It can be shown that there are disjoint sets B_1 and B_2 that do not fulfil $\lambda^*(B_1 \cup B_2) = \lambda^*(B_1) + \lambda^*(B_2)$
- However, the problem is not the definition of λ^{*}, it is the fact that we allow arbitrary sets ⊂ ℝ...
 - ... there is general consensus that there are sets that are not "measurable" according to any useful definition

The Banach–Tarski Paradox (1924)

- A ball in \mathbb{R}^3 can be decomposed into finitely many disjoint pieces which can be rearranged by rigid motions and reassembled to form two balls of the same size as the original.
 - Given any two bounded subsets A and B of ℝ^k, k ≥ 3, both of which have a non-empty interior, there are partitions of A and B into a finite number of disjoint subsets,
 - $A = A_1 \cup \cdots \cup A_N$, $B = B_1 \cup \cdots \cup B_N$, such that for each n between 1 and N, the sets A_n and B_n are congruent (equal up to translation, rotation and reflection).
 - For k = 1, 2 the same statement is true for countably infinite partitions instead of finite.

Mikael Skoglund, Probability...

Lebesgue Measurable

- B₁ and B₂ need to be *sufficiently separated*, the sets in the paradox are arbitrarily intermingled
- If O is an open set such that $A \subset O$ and $B \subset O^c$, then $\lambda^*(A \cup B) = \lambda^*(A) + \lambda^*(B)$
- In particular

$$\lambda^*(A) = \lambda^*(A \cap O) + \lambda^*(A \cap O^c)$$

for all A and any open O

• A set $W \subset \mathbb{R}$ is Lebesgue measurable if

$$\lambda^*(A) = \lambda^*(A \cap W) + \lambda^*(A \cap W^c)$$

for all \boldsymbol{A}

- "Lebesgue measurable" more general than "open"
- Note that if W₁ and W₂ are Lebesgue measurable and disjoint, then with A = W₁ ∪ W₂ we have

$$\lambda^*(W_1 \cup W_2) = \lambda^*(A) = \lambda^*(A \cap W_1) + \lambda^*(A \cap W_1^c)$$
$$= \lambda^*(W_1) + \lambda^*(W_2)$$

Mikael Skoglund, Probability...

Lebesgue Measure

- λ* restricted to sets in L = λ = Lebesgue measure,
 "restricted to," notation λ = λ^{*}_{|L}
- $\lambda(A) =$ the most general (widely accepted) definition of "length(A)" for any $A \in \mathcal{L}$
- $\lambda(B) = \sum_i \lambda(B_i)$ if $B = \bigcup_i B_i$ and for all $B_i \in \mathcal{L}$, $i = 1, 2, 3, \ldots$, such that $B_i \cap B_j = \emptyset$

Lebesgue Measurable Function

- A function f : ℝ → ℝ is Lebesgue measurable if the inverse image of every open set is Lebesgue measurable, i.e.,
 - $f^{-1}(O) = \{x : f(x) \in O\} \in \mathcal{L}$ for all open O
- Two functions f and g are equal Lebesgue almost everywhere, λ -a.e., if

$$\lambda(\{x: f(x) \neq g(x)\}) = 0$$

• If f is Lebesgue measurable and $g = f \lambda$ -a.e. then g is Lebesgue measurable

Mikael Skoglund, Probability...

- f continuous iff the inverse image of every open set is open; sets in L are more general than "open" ⇒ Lebesgue measurable functions are more general than "continuous"
- If $\{f_n\}$ are Lebesgue measurable and $f_n \to f$ pointwise then f is Lebesgue measurable
 - C.f. "continuous functions" where the class is closed under uniform but not pointwise convergence