Probability and Random Processes

Lecture 1

- Lebesgue measure on the real line

Measure Size/Length of Real Sets

- I an interval of the form $[a, b],[a, b),(a, b]$ or (a, b), for $b \geq a$
- $\ell(I)=b-a=$ length of I
- in particular, $\ell(I)=0$ if $a=b$
- How do we generalize "length" to sets which are more complicated?
- For any generalization, it would be reasonable to require
- length $(A) \geq 0$ for all A
- length $(\emptyset)=0$
- length $(A)=\ell(A)$ if A is an interval
- length $(B)=$ length $\left(B_{1}\right)+$ length $\left(B_{2}\right)$ if $B=B_{1} \cup B_{2}$ and $B_{1} \cap B_{2}=\emptyset$
- Clue: for any open set B, this should work

$$
\text { length }(B)=\sum_{i} \ell\left(I_{i}\right)
$$

where $\left\{I_{i}\right\}$ are the open intervals that form $B \Rightarrow$ we know how to measure open sets

- Define 'length (B) ' as above if B is open
\Rightarrow Lebesgue outer measure, for any $A \subset \mathbb{R}$ define

$$
\lambda^{*}(A)=\inf \text { length }(B) \text { over all open } B \text { such that } A \subset B
$$

- Can λ^{*} work as the extension of length we are looking for?
- $\lambda^{*}(A) \geq 0 \quad$ OK
- $\lambda^{*}(A)=\ell(A)$ if A is an interval OK
- $\lambda^{*}(B)=\lambda^{*}\left(B_{1}\right)+\lambda^{*}\left(B_{2}\right)$ if $B=B_{1} \cup B_{2}$ and $B_{1} \cap B_{2}=\emptyset$ not OK
- It can be shown that there are disjoint sets B_{1} and B_{2} that do not fulfil $\lambda^{*}\left(B_{1} \cup B_{2}\right)=\lambda^{*}\left(B_{1}\right)+\lambda^{*}\left(B_{2}\right)$
- However, the problem is not the definition of λ^{*}, it is the fact that we allow arbitrary sets $\subset \mathbb{R}$...
- ... there is general consensus that there are sets that are not "measurable" according to any useful definition

The Banach-Tarski Paradox (1924)

- A ball in \mathbb{R}^{3} can be decomposed into finitely many disjoint pieces which can be rearranged by rigid motions and reassembled to form two balls of the same size as the original.
- Given any two bounded subsets A and B of $\mathbb{R}^{k}, k \geq 3$, both of which have a non-empty interior, there are partitions of A and B into a finite number of disjoint subsets, $A=A_{1} \cup \cdots \cup A_{N}, B=B_{1} \cup \cdots \cup B_{N}$, such that for each n between 1 and N, the sets A_{n} and B_{n} are congruent (equal up to translation, rotation and reflection).
- For $k=1,2$ the same statement is true for countably infinite partitions instead of finite.

Lebesgue Measurable

- B_{1} and B_{2} need to be sufficiently separated, the sets in the paradox are arbitrarily intermingled
- If O is an open set such that $A \subset O$ and $B \subset O^{c}$, then $\lambda^{*}(A \cup B)=\lambda^{*}(A)+\lambda^{*}(B)$
- In particular

$$
\lambda^{*}(A)=\lambda^{*}(A \cap O)+\lambda^{*}\left(A \cap O^{c}\right)
$$

for all A and any open O

- A set $W \subset \mathbb{R}$ is Lebesgue measurable if

$$
\lambda^{*}(A)=\lambda^{*}(A \cap W)+\lambda^{*}\left(A \cap W^{c}\right)
$$

for all A

- "Lebesgue measurable" more general than "open"
- Note that if W_{1} and W_{2} are Lebesgue measurable and disjoint, then with $A=W_{1} \cup W_{2}$ we have

$$
\begin{aligned}
\lambda^{*}\left(W_{1} \cup W_{2}\right) & =\lambda^{*}(A)=\lambda^{*}\left(A \cap W_{1}\right)+\lambda^{*}\left(A \cap W_{1}^{c}\right) \\
& =\lambda^{*}\left(W_{1}\right)+\lambda^{*}\left(W_{2}\right)
\end{aligned}
$$

Lebesgue Measure

- λ^{*} restricted to sets in $\mathcal{L}=\lambda=$ Lebesgue measure, - "restricted to," notation $\lambda=\lambda_{\text {L }}^{*}$
- $\lambda(A)=$ the most general (widely accepted) definition of "length (A) " for any $A \in \mathcal{L}$
- $\lambda(B)=\sum_{i} \lambda\left(B_{i}\right)$ if $B=\cup_{i} B_{i}$ and for all $B_{i} \in \mathcal{L}$, $i=1,2,3, \ldots$, such that $B_{i} \cap B_{j}=\emptyset$
- A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is Lebesgue measurable if the inverse image of every open set is Lebesgue measurable, i.e.,
- $f^{-1}(O)=\{x: f(x) \in O\} \in \mathcal{L}$ for all open O
- Two functions f and g are equal Lebesgue almost everywhere, λ-a.e., if

$$
\lambda(\{x: f(x) \neq g(x)\})=0
$$

- If f is Lebesgue measurable and $g=f \lambda$-a.e. then g is Lebesgue measurable
- f continuous iff the inverse image of every open set is open; sets in \mathcal{L} are more general than "open" \Rightarrow Lebesgue measurable functions are more general than "continuous"
- If $\left\{f_{n}\right\}$ are Lebesgue measurable and $f_{n} \rightarrow f$ pointwise then f is Lebesgue measurable
- C.f. "continuous functions" where the class is closed under uniform but not pointwise convergence

