Probability and Random Processes Lecture 11

- Measurable dynamical systems
- Random processes as dynamical systems
- Stationarity
- Ergodic theory

Mikael Skoglund, Probability and random processes

1/13

Measurable Dynamical System

- A probability space (Ω, \mathcal{A}, P)
- A measurable transformation $\phi : (\Omega, \mathcal{A}) \to (\Omega, \mathcal{A})$
- The space $(\Omega, \mathcal{A}, P, \phi)$ is called a measurable dynamical system

Interpretation

- Nature selects an initial state $\omega = \omega_0$
- For $n \ge 0$, time acts on $\omega \in \Omega$ to 'move around' points in Ω ,

$$\omega_{n+1} = \phi(\omega_n) = \{ \text{ notation } \} = \phi\omega_n = \phi^{n+1}\omega_0$$

producing an orbit $\{\omega_n\}$

• The orbit is random because ω_0 is selected at random

Mikael Skoglund, Probability and random processes

Random Process as Dynamical System

- There are several ways to model a random process as a dynamical system consider a discrete-time process $\{X_t\}$, for $t \in T$ and with $T = \mathbb{N}$
- Approach 1: $\{X_t\}$ is a collection of random variables $X_t: \Omega \to \mathbb{R}$ where for each t and ω

$$X_t(\omega) = X(\phi^t \omega)$$

for some fixed random variable \boldsymbol{X}

• Approach 2: Define ϕ implicitly on Ω by specifying a time-shift ϕ' on T, i.e., $\phi'(t) = t + 1$ and

$$(X_0, X_1, X_2, X_3, \ldots) \xrightarrow{\phi'} (X_1, X_2, X_3, X_4, \ldots)$$

- The model $X_t(\omega) = X(\phi^t \omega)$ fits with interpreting $\{X_t\}$ as a collection or random variables
- Note that we can also consider $(E^T, \mathcal{E}^T, \mu, \phi)$, i.e., the evolution of the process is described by $\phi : E^T \to E^T$

• for example, $\phi(f(t)) = f(t+1)$

which fits better with the time-shift in approach 2

Mikael Skoglund, Probability and random processes

Continuous Time

- We will focus on systems $(\Omega, \mathcal{A}, P, \phi)$ interpreting ϕ as 'one discrete action of time' i.e., discrete-time systems
- Continuous-time systems can be modeled using a family $\{\phi_t\}_{t\in\Phi}$ of transformations, with $\Phi = \mathbb{R}$ or \mathbb{R}^+ , such that

$$\phi_{t+s} = \phi_t \phi_s$$

That is $\phi_{t+s}\omega = \phi_t\phi_s\omega$

- The family $\{\phi_t\}$ is called a flow
- A random waveform can be defined, e.g., as

$$X_t(\omega) = X(\phi_t \omega)$$

Stationarity

- A dynamical system $(\Omega, \mathcal{A}, P, \phi)$
- The system is stationary if

$$P(A) = P(\phi^{-1}(A)), \text{ for all } A \in \mathcal{A}$$

(where $\phi^{-1}(A) = \{\omega : \phi\omega \in A\} \subset \mathcal{A}$)

• The system is asymptotically mean stationary (AMS) if the limit

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} P(\phi^{-i}(A)) = \bar{P}(A)$$

exists pointwise for all $A \in \mathcal{A}$

• $(\Omega, \mathcal{A}, P, \phi) \text{ AMS} \Rightarrow \overline{P} \text{ is a probability measure and}$ $(\Omega, \mathcal{A}, \overline{P}, \phi) \text{ is stationary}$ (of course) stationary $\Rightarrow \text{ AMS} \text{ and } \overline{P} = P$

Mikael Skoglund, Probability and random processes

Recurrence

- A dynamical system $(\Omega, \mathcal{A}, P, \phi)$
- A point $\omega \in A$ is said to be recurrent with respect to $A \in \mathcal{A}$ if there is a finite $N = N_A(\omega)$ such that $\phi^N \omega \in A$
 - $\omega \in A \Rightarrow \omega$ returns to A in finite time
- $A \in \mathcal{A}$ is recurrent if P(A) > 0 and $P(\{\omega \in A : \omega \text{ is not recurrent w.r.t. } A\}) = 0$
- $(\Omega, \mathcal{A}, P, \phi)$ is recurrent if all $A \in \mathcal{A}$ are recurrent
- stationary \Rightarrow recurrent

Ergodicity

- A dynamical system $(\Omega, \mathcal{A}, P, \phi)$
- If $A \in \mathcal{A}$ is such that $\phi^{-1}(A) = A$ then A is invariant
- Let $\mathcal{I} = \{ \text{ all invariant } A \in \mathcal{A} \}$
 - \mathcal{I} is a σ -algebra (why?)
- $(\Omega, \mathcal{A}, P, \phi)$ is ergodic if P(B) = 1 or 0 for all $B \in \mathcal{I}$

Mikael Skoglund, Probability and random processes

The Ergodic Theorem

Theorem: If (Ω, A, P, φ) is AMS and X is a random variable such that

$$\int X(\omega)d\bar{P} < \infty$$

then

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} X(\phi^i \omega) = \bar{E}[X|\mathcal{I}]$$

with probability one (under P and \bar{P}), where $\bar{E}[X|\mathcal{I}]$ is conditional expectation w.r.t. \bar{P} and where $\mathcal I$ is the σ -algebra of invariant events

Let

$$\bar{X} = \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} X(\phi^n \omega)$$

then \bar{X} is an \mathcal{I} -measurable random variable

Note that

$$\int \bar{X}d\bar{P} = \int Xd\bar{P}$$

and that if $(\Omega, \mathcal{A}, P, \phi)$, in addition, is ergodic then

$$ar{X} = \int X dar{P}, \quad ar{P}$$
-a.e.

• In particular, if $(\Omega, \mathcal{A}, P, \phi)$ is stationary and ergodic, then $\bar{X} = E[X]$ with probability one

Mikael Skoglund, Probability and random processes

Ergodic Decomposition

- Fix a standard measurable space (Ω, \mathcal{A}) and $\phi: \Omega \to \Omega$
- Assume there is a P such that $(\Omega, \mathcal{A}, P, \phi)$ is stationary
- Then there are a standard space (Γ, S) , a family $\{P_{\gamma}\}_{\gamma \in \Gamma}$ and a measurable transformation $\tau: \Omega \to \Gamma$ such that
 - **1** τ is invariant $(\tau(\phi\omega) = \tau(\omega))$

 - 2 $(\Omega, \mathcal{A}, P_{\gamma}, \phi)$ is stationary and ergodic, for each $\gamma \in \Gamma$ 3 if τ induces $P^*(S) = P(\tau^{-1}(S))$ on (Γ, S) , then for all $A \in \mathcal{A}$

$$P(A) = \int P_{\tau(\omega)}(A)dP(\omega) = \int P_{\gamma}(A)dP^{*}(\gamma)$$

4 if $\int f(\omega)dP(\omega) < \infty$ then

$$\int f dP = \int \left\{ \int f dP_{\tau(\omega)} \right\} dP(\omega) = \int \left\{ \int f dP_{\gamma} \right\} dP^*(\gamma)$$

- For any stationary $(\Omega, \mathcal{A}, P, \phi)$ we can decompose P into a mixture of stationary and ergodic components P_{γ}
- For $A \in \mathcal{A}$, the component in effect is characterized by

$$P_{\gamma}(A) = P(A|\tau = \gamma)$$

(regular conditional probability, given the exact outcome γ of the random object $\tau : (\Omega, \mathcal{A}) \to (\Gamma, \mathcal{S})$)

- Interpretation: when time starts, Nature selects which component P_{γ} will be active, with probability P^* on (Γ, S) ,
 - \Rightarrow the output from a stationary system always "looks ergodic," however we do not know beforehand which ergodic component will be active