Probability and Random Processes

Lecture 4

- General integration theory

Measurable Extended Real-valued Functions

- $\mathbb{R}^{*}=$ the extended real numbers; a subset $O \subset \mathbb{R}^{*}$ is open if it can be expressed as a countable union of intervals of the form $(a, b),[-\infty, b),(a, \infty]$
- A measurable space (Ω, \mathcal{A}); an extended real-valued function $f: \Omega \rightarrow \mathbb{R}^{*}$ is measurable if $f^{-1}(O) \subset \mathcal{A}$ for all open $O \subset \mathbb{R}^{*}$
- A sequence $\left\{f_{n}\right\}$ of measurable extended real-valued functions: for any $x, \lim \sup f_{n}(x)$ and $\liminf f_{n}(x)$ are measurable \Rightarrow if $f_{n} \rightarrow g$ pointwise, then g is measurable
- Hence, with the definition above, e.g.

$$
f_{n}(x)=\frac{n}{\sqrt{2 \pi}} \exp \left(-\frac{(n x)^{2}}{2}\right)
$$

converges to a measurable function on $(\mathbb{R}, \mathcal{B})$ or $(\mathbb{R}, \mathcal{L})$

- An \mathcal{A}-measurable function s is a simple function if its range is a finite set $\left\{a_{1}, \ldots, a_{n}\right\}$. With $A_{k}=\left\{x: s(x)=a_{k}\right\}$, we get

$$
s(x)=\sum_{k=1}^{n} a_{k} \chi_{A_{k}}(x)
$$

(since s is measurable, $A_{k} \in \mathcal{A}$)

Integral of a Nonnegative Simple Function

- A measure space $(\Omega, \mathcal{A}, \mu)$ and $s: \Omega \rightarrow \mathbb{R}$ a nonnegative simple function which is \mathcal{A}-measurable, represented as

$$
s(x)=\sum_{k=1}^{n} a_{k} \chi_{A_{k}}(x)
$$

The integral of s over Ω with respect to μ is defined as

$$
\int s(x) d \mu(x)=\sum_{k=1}^{n} a_{k} \mu\left(A_{k}\right)
$$

Approximation by a Simple Function

- For any nonnegative extended real-valued and \mathcal{A}-measurable function f, there is a nondecreasing sequence of nonnegative \mathcal{A}-measurable simple functions that converges pointwise to f,

$$
\begin{gathered}
0 \leq s_{1}(x) \leq s_{2}(x) \leq \cdots \leq f(x) \\
f(x)=\lim _{n \rightarrow \infty} s_{n}(x)
\end{gathered}
$$

- If f is the pointwise limit of an increasing sequence of nonnegative \mathcal{A}-measurable simple functions, then f is an extended real-valued \mathcal{A}-measurable function
\Longleftrightarrow The nonnegative extended real-valued \mathcal{A}-measurable functions are exactly the ones that can be approximated using sequences of \mathcal{A}-measurable simple functions

Integral of a Nonnegative Function

- A measure space $(\Omega, \mathcal{A}, \mu)$ and $f: \Omega \rightarrow \mathbb{R}^{*}$ a nonnegative extended real-valued function which is \mathcal{A}-measurable. The integral of f over Ω is defined as

$$
\int_{\Omega} f d \mu=\sup _{s} \int_{\Omega} s d \mu
$$

where the supremum is over all nonnegative \mathcal{A}-measurable simple functions dominated by f.

- Integral over an arbitrary set $E \in \mathcal{A}$,

$$
\int_{E} f d \mu=\int_{\Omega} f \chi_{E} d \mu
$$

Convergence Results

- MCT: if $\left\{f_{n}\right\}$ is a monotone nondecreasing sequence of nonnegative extended real-valued \mathcal{A}-measurable functions, then

$$
\int_{E} \lim f_{n} d \mu=\lim \int_{E} f_{n} d \mu
$$

for any $E \in \mathcal{A}$

- Fatou: if $\left\{f_{n}\right\}$ is a sequence of nonnegative extended real-valued \mathcal{A}-measurable functions, then

$$
\int_{E} \liminf f_{n} d \mu \leq \liminf \int_{E} f_{n} d \mu
$$

for any $E \in \mathcal{A}$

Integral of a General Function

- Let f be an extended real-valued \mathcal{A}-measurable function, and let $f^{+}=\max \{f, 0\}, f^{-}=-\min \{f, 0\}$, then the integral of f over E is defined as

$$
\int_{E} f d \mu=\int_{E} f^{+} d \mu-\int_{E} f^{-} d \mu
$$

for any $E \in \mathcal{A}$

- f is integrable over E if

$$
\int_{E}|f| d \mu=\int_{E} f^{+} d \mu+\int_{E} f^{-} d \mu<\infty
$$

- A measure space $(\Omega, \mathcal{A}, \mu)$, and a function f defined μ-a.e. on Ω (if D is the domain of f then $\mu\left(D^{c}\right)=0$). If there is an extended real-valued \mathcal{A}-measurable function g such that $g=f \mu$-a.e., then define the integral of f as

$$
\int_{E} f d \mu=\int_{E} g d \mu
$$

for any $E \in \mathcal{A}$.

DCT, General Version

- A measure space $(\Omega, \mathcal{A}, \mu)$, and a sequence $\left\{f_{n}\right\}$ of extended real-valued \mathcal{A}-measurable functions that converges pointwise μ-a.e. Assume that there is a nonnegative integrable function g such that $\left|f_{n}\right| \leq g \mu$-a.e. for each n. Then

$$
\int_{E} \lim f_{n} d \mu=\lim \int_{E} f_{n} d \mu
$$

for any $E \in \mathcal{A}$

DCT: Proof

- Let $f(x)=\lim f_{n}(x)$ if $\lim f_{n}(x)$ exists, and $f(x)=0$ o.w., then f is measurable and $f_{n} \rightarrow f \mu$-a.e. Hence

$$
\int_{E} \lim f_{n} d \mu=\int_{E} f d \mu
$$

- Fatou \Rightarrow

$$
\begin{aligned}
& \int(g-f) d \mu \leq \liminf _{n \rightarrow \infty} \int\left(g-f_{n}\right) d \mu=\int g d \mu-\limsup _{n \rightarrow \infty} \int f_{n} d \mu \\
& \Rightarrow \lim \sup \int f_{n} d \mu \leq \int f d \mu
\end{aligned}
$$

- Fatou \Rightarrow

$$
\int(g+f) d \mu \leq \liminf _{n \rightarrow \infty} \int\left(g+f_{n}\right) d \mu \Rightarrow \int f d \mu \leq \liminf _{n \rightarrow \infty} \int f_{n} d \mu
$$

DCT for Convergence in Measure

- A measure space $(\Omega, \mathcal{A}, \mu)$, and a sequence $\left\{f_{n}\right\}$ of extended real-valued \mathcal{A}-measurable functions that converges in measure to the \mathcal{A}-measurable function f. Assume that there is a nonnegative integrable function g such that $\left|f_{n}\right| \leq g \mu$-a.e. for each n. Then

$$
\int_{E} f d \mu=\lim \int_{E} f_{n} d \mu
$$

for any $E \in \mathcal{A}$

Distribution Functions

- Let μ be a finite measure on $(\mathbb{R}, \mathcal{B})$, then the distribution function of μ is defined as

$$
F_{\mu}(x)=\mu((-\infty, x])
$$

- A (general) real-valued function F on \mathbb{R} is called a distribution function if the following holds
(1) F is monotone nondecreasing
(2) F is right continuous
(3) F is bounded
(4) $\lim _{x \rightarrow-\infty} F(x)=0$
- Each distribution function is the distribution function corresponding to a unique finite measure on $(\mathbb{R}, \mathcal{B})$
- The finite measure μ corresponding to F is called the Lebesgue-Stieltjes measure corresponding to F

The Lebesgue-Stieltjes Integral

- Let F be a distribution function with corresponding Lebesgue-Stieltjes measure μ. Let f be a Borel measurable function, then the Lebesgue-Stieltjes integral of f w.r.t. F is defined as

$$
\int f(x) d F(x)=\int f(x) d \mu(x)
$$

The Lebesgue-Stieltjes Integral: Example

- Take the Dirac measure

$$
\delta_{b}(E)= \begin{cases}1, & b \in E \\ 0, & \text { o.w. }\end{cases}
$$

and restrict it to \mathcal{B}, then the corresponding distribution function is

$$
F(x)= \begin{cases}1, & x \geq b \\ 0, & \text { o.w }\end{cases}
$$

- Let f be finite and Borel measurable, then

$$
\int f(x) d F(x)=f(b)
$$

- A way of handling discrete (random) variables and expectation, without having to resort to 'Dirac δ-functions'

