Probability and Random Processes Lecture 5

- Probability and random variables
- The law of large numbers

Mikael Skoglund, Probability and random processes

1/21

Why Measure Theoretic Probability?

- Stronger limit theorems
- Conditional probability/expectation
- Proper theory for continuous and mixed random variables

Probability Space

- A probability space is a measure space (Ω, \mathcal{A}, P)
 - the sample space Ω is the 'universe,' i.e. the set of all possible outcomes
 - the event class ${\mathcal A}$ is a σ -algebra of measurable sets called events
 - the probability measure is a measure on events in ${\mathcal A}$ with the property $P(\Omega)=1$

Mikael Skoglund, Probability and random processes

3/21

Interpretation

- A random experiment generates an outcome $\omega \in \Omega$
- For each $A \in \mathcal{A}$ either $\omega \in A$ or $\omega \notin A$
- An event A in $\mathcal A$ occurs if $\omega \in A$ with probability P(A)
 - since $\mathcal A$ is the σ -algebra of measurable sets, we are ensured that all 'reasonable' combinations of events and sequences of events are measurable, i.e., have probabilities

With Probability One

- An event $E \in \mathcal{A}$ occurs with probability one if P(E) = 1
 - almost everywhere, almost certainly, almost surely,...

Mikael Skoglund, Probability and random processes

5/21

Independence

- E and F in \mathcal{A} are independent if $P(E \cap F) = P(E)P(F)$
- The events in a collection A_1, \ldots, A_n are
 - pairwise independent if A_i and A_j are independent for $i \neq j$
 - ullet mutually independent if for any $\{i_1,i_2,\ldots,i_k\}\subseteq\{1,2,\ldots,n\}$

$$P(A_{i_1} \cap A_{i_2} \cap \dots \cap A_{i_k}) = P(A_{i_1})P(A_{i_2}) \dots P(A_{i_k})$$

- An infinite collection is mutually independent if any finite subset of events is mutually independent
- 'mutually' ⇒ 'pairwise' but not vice versa

Eventually and Infinitely Often

• A probability space (Ω, \mathcal{A}, P) and an infinite sequence of events $\{A_n\}$, define

$$\liminf A_n = \bigcup_{n=1}^{\infty} \left(\bigcap_{k=n}^{\infty} A_k \right), \ \limsup A_n = \bigcap_{n=1}^{\infty} \left(\bigcup_{k=n}^{\infty} A_k \right)$$

• $\omega \in \liminf A_n$ iff there is an N such that $\omega \in A_n$ for all n > N, that is, the event $\liminf A_n$ occurs eventually,

$$\{A_n \text{ eventually}\}$$

• $\omega \in \limsup A_n$ iff for any N there is an n > N such that $\omega \in A_n$, that is, the event $\limsup A_n$ occurs infinitely often

$$\{A_n \text{ i.o.}\}$$

Mikael Skoglund, Probability and random processes

7/21

Borel-Cantelli

- The Borel–Cantelli lemma: A probability space (Ω, \mathcal{A}, P) and an infinite sequence of events $\{A_n\}$
 - 1) if $\sum_{n} P(A_n) < \infty$, then

$$P\left(\{A_n \text{ i.o}\}\right) = 0$$

2 if the events $\{A_n\}$ are mutually independent and $\sum_n P(A_n) = \infty$, then

$$P\left(\left\{A_n \text{ i.o}\right\}\right) = 1$$

Random Variables

- A probability space (Ω, \mathcal{A}, P) . A real-valued function $X(\omega)$ on Ω is called a random variable if it's measurable w.r.t. (Ω, \mathcal{A})
 - Recall: $measurable \Rightarrow X^{-1}(O) \in \mathcal{A}$ for any $open\ O \subset \mathbb{R}$ $\iff X^{-1}(A) \in \mathcal{A}$ for any $A \in \mathcal{B}$ (the Borel sets)
- Notation:
 - the event $\{\omega: X(\omega) \in B\} \rightarrow X' \in B'$
 - $P(\{X \in A\} \cap \{X \in B\}) \to P(X \in A, X \in B)'$, etc.

Mikael Skoglund, Probability and random processes

9/21

Distributions

- X is measurable $\Rightarrow P(X \in B)$ is well-defined for any $B \in \mathcal{B}$
- The distribution of X is the function $\mu_X(B) = P(X \in B)$, for $B \in \mathcal{B}$
 - μ_X is a probability measure on (\mathbb{R},\mathcal{B})
- The probability distribution function of X is the real-valued function

$$F_X(x) = P(\{\omega : X(\omega) \le x\}) = \text{(notation)} = P(X \le x)$$

• F_X is (obviously) the distribution function of the finite measure μ_X on (\mathbb{R},\mathcal{B}) , i.e.

$$F_X(x) = \mu_X((-\infty, x])$$

Independence

- Two random variables X and Y are pairwise independent if the events $\{X \in A\}$ and $\{Y \in B\}$ are independent for any A and B in $\mathcal B$
- A collection of random variables X_1, \ldots, X_n is mutually independent if the events $\{X_i \in B_i\}$ are mutually independent for all $B_i \in \mathcal{B}$

Mikael Skoglund, Probability and random processes

11/21

Expectation

• For a random variable on (Ω, \mathcal{A}, P) , the expectation of X is defined as

$$E[X] = \int_{\Omega} X(\omega) dP(\omega)$$

ullet For any Borel-measurable real-valued function g

$$E[g(X)] = \int g(x)dF_X(x) = \int g(x)d\mu_X(x)$$

in particular

$$E[X] = \int x d\mu_X(x)$$

• The variance of X,

$$Var(X) = E[(X - E[X])^2]$$

• Chebyshev's inequality: For any $\varepsilon > 0$,

$$P(|X - E[X]| \ge \varepsilon) \le \frac{\operatorname{Var}(X)}{\varepsilon^2}$$

• Kolmogorov's inequality: For mutually independent random variables $\{X_k\}_{k=1}^n$ with $\mathrm{Var}(X_k)<\infty$, set $S_j=\sum_{k=1}^j X_k$, $1\leq j\leq n$, then for any $\varepsilon>0$

$$P\left(\max_{j}|S_{j}-E[S_{j}]|\geq\varepsilon\right)\leq\frac{\operatorname{Var}(S_{n})}{\varepsilon^{2}}$$

 $(n=1 \Rightarrow \mathsf{Chebyshev})$

Mikael Skoglund, Probability and random processes

13/21

The Law of Large Numbers

- A sequence $\{X_n\}$ is iid if the random variables X_n all have the same distribution and are mutually independent
- For any iid sequence $\{X_n\}$ with $\mu = E[X_n] < \infty$, the event

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} X_k = \mu$$

occurs with probability one

 Toward the end of the course, we will generalize this result to stationary and ergodic random processes... • $S_n = n^{-1} \sum_n X_n \to \mu$ with probability one $\Rightarrow S_n \to \mu$ in probability, i.e.,

$$\lim_{n \to \infty} P(\{|S_n - \mu| \ge \varepsilon\}) = 0$$

for each $\varepsilon > 0$

 in general 'in probability' does not imply 'with probability one' (convergence in measure does not imply convergence a.e.)

Mikael Skoglund, Probability and random processes

15/21

The Law of Large Numbers: Proof

ullet Lemma 1: For a nonnegative random variable X

$$\sum_{n=1}^{\infty} P(X \ge n) \le E[X] \le \sum_{n=0}^{\infty} P(X \ge n)$$

- Lemma 2: For mutually independent random variables $\{X_n\}$ with $\sum_n \mathrm{Var}(X_n) < \infty$ it holds that $\sum_n (X_n E[X_n])$ converges with probability one
- Lemma 3 (Kronecker's Lemma): Given a sequence $\{a_n\}$ with $0 \le a_1 \le a_2 \le \cdots$ and $\lim a_n = \infty$, and another sequence $\{x_k\}$ such that $\lim \sum_k x_k$ exists, then

$$\lim_{n \to \infty} \frac{1}{a_n} \sum_{k=1}^n a_k x_k = 0$$

- Assume without loss of generality (why?) that $\mu = 0$
- Lemma $1 \Rightarrow$

$$\sum_{n=1} P(|X_n| \ge n) = \sum_{n=1} P(|X_1| \ge n) < \infty$$

- Let $E=\{|X_k|\geq k \text{ i.o.}\}$, Borel-Cantelli $\Rightarrow P(E)=0 \Rightarrow$ we can concentrate on $\omega\in E^c$
- Let $Y_n=X_n\chi_{\{|X_n|< n\}}$; if $\omega\in E^c$ then there is an N such that $Y_n(\omega)=X_n(\omega)$ for $n\geq N$, thus for $\omega\in E^c$

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} X_k = 0 \iff \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} Y_k = 0$$

• Note that $E[Y_n] \to \mu = 0$ as $n \to \infty$

Mikael Skoglund, Probability and random processes

17/21

• Letting $Z_n=n^{-1}Y_n$, it can be shown that $\sum_{n=1}^{\infty} \mathrm{Var}(Z_n) < \infty$ (requires some work). Hence, according to Lemma 2 the limit

$$Z = \lim_{n \to \infty} \sum_{k=1}^{n} (Z_k - E[Z_k])$$

exists with probability one.

• Furthermore, by Lemma 3

$$\frac{1}{n} \sum_{k=1}^{n} (Y_k - E[Y_k]) = \frac{1}{n} \sum_{k=1}^{n} k(Z_k - E[Z_k]) \to 0$$

where also

$$\frac{1}{n} \sum_{k=1}^{n} E[Y_k] \to 0$$

since
$$E[Y_k] \to E[X_k] = E[X_1] = 0$$

Proof of Lemma 2

- Assume w.o. loss of generality that $E[X_n]=0$, set $S_n=\sum_{k=1}^n X_k$
- For $E_n \in \mathcal{A}$ with $E_1 \subset E_2 \subset \cdots$ it holds that

$$P\left(\bigcup_{n} E_{n}\right) = \lim_{n \to \infty} P(E_{n})$$

Therefore, for any $m \ge 0$

$$P\left(\bigcup_{k=1}^{\infty} \{|S_{m+k} - S_m| \ge \varepsilon\}\right) = \lim_{n \to \infty} P\left(\bigcup_{k=1}^{n} \{|S_{m+k} - S_m| \ge \varepsilon\}\right)$$
$$= \lim_{n \to \infty} P\left(\max_{1 \le k \le n} |S_{m+k} - S_m| \ge \varepsilon\right)$$

Mikael Skoglund, Probability and random processes

19/21

• Let $Y_k = X_{m+k}$ and

$$T_k = \sum_{j=1}^k Y_j = S_{m+k} - S_m,$$

then Kolmogorov's inequality implies

$$P\left(\max_{1\leq k\leq n} |T_k - E[T_k]| \geq \varepsilon\right) =$$

$$P\left(\max_{1\leq k\leq n} |S_{m+k} - S_m| \geq \varepsilon\right) \leq \frac{\operatorname{Var}(S_{m+n} - S_m)}{\varepsilon^2} = \frac{1}{\varepsilon^2} \sum_{k=m+1}^{m+n} \operatorname{Var}(X_k)$$

Hence

$$P\left(\bigcup_{k=1}^{\infty} \{|S_{m+k} - S_m| \ge \varepsilon\}\right) \le \frac{1}{\varepsilon^2} \sum_{k=m+1}^{\infty} \operatorname{Var}(X_k)$$

• Since $\sum_{n} \operatorname{Var}(X_n) < \infty$, we get for any $\varepsilon > 0$

$$\lim_{m \to \infty} P\left(\bigcup_{k=1}^{\infty} \{|S_{m+k} - S_m| \ge \varepsilon\}\right) = 0$$

• Now, let $E = \{\omega : \{S_n(\omega)\}\$ does not converge $\}$. Then $\omega \in E$ iff $\{S_n(\omega)\}$ is not a Cauchy sequence \Rightarrow for any n there is a k and an r such that $|S_{n+k} - S_n| \ge r^{-1}$. Hence, equivalently,

$$E = \bigcup_{r=1}^{\infty} \left(\bigcap_{n} \left(\bigcup_{k} \left\{ |S_{n+k} - S_n| \ge \frac{1}{r} \right\} \right) \right)$$

• For $F_1 \supset F_2 \supset F_3 \cdots$, $P(\cap_k F_k) = \lim P(F_k)$, hence for any r > 0

$$P\left(\bigcap_{n=1}^{\infty} \left(\bigcup_{k} \left\{ |S_{n+k} - S_n| \ge \frac{1}{r} \right\} \right) \right) = P\left(\bigcap_{n=1}^{\infty} \left(\bigcap_{\ell=1}^{n} \left(\bigcup_{k} \left\{ |S_{\ell+k} - S_{\ell}| \ge \frac{1}{r} \right\} \right) \right) \right)$$

$$= \lim_{n \to \infty} P\left(\bigcap_{\ell=1}^{n} \left(\bigcup_{k} \left\{ |S_{\ell+k} - S_{\ell}| \ge \frac{1}{r} \right\} \right) \right) \le \lim_{n \to \infty} P\left(\bigcup_{k} \left\{ |S_{n+k} - S_n| \ge \frac{1}{r} \right\} \right)$$

Mikael Skoglund, Probability and random processes