Probability and Random Processes Lecture 5

- Probability and random variables
- The law of large numbers
- Stronger limit theorems
- Conditional probability/expectation
- Proper theory for continuous and mixed random variables

Probability Space

- A probability space is a measure space (Ω, \mathcal{A}, P)
- the sample space Ω is the 'universe,' i.e. the set of all possible outcomes
- the event class \mathcal{A} is a σ-algebra of measurable sets called events
- the probability measure is a measure on events in \mathcal{A} with the property $P(\Omega)=1$

Interpretation

- A random experiment generates an outcome $\omega \in \Omega$
- For each $A \in \mathcal{A}$ either $\omega \in A$ or $\omega \notin A$
- An event A in \mathcal{A} occurs if $\omega \in A$ with probability $P(A)$
- since \mathcal{A} is the σ-algebra of measurable sets, we are ensured that all 'reasonable' combinations of events and sequences of events are measurable, i.e., have probabilities

With Probability One

- An event $E \in \mathcal{A}$ occurs with probability one if $P(E)=1$
- almost everywhere, almost certainly, almost surely,...

Independence

- E and F in \mathcal{A} are independent if $P(E \cap F)=P(E) P(F)$
- The events in a collection A_{1}, \ldots, A_{n} are
- pairwise independent if A_{i} and A_{j} are independent for $i \neq j$
- mutually independent if for any $\left\{i_{1}, i_{2}, \ldots, i_{k}\right\} \subseteq\{1,2, \ldots, n\}$

$$
P\left(A_{i_{1}} \cap A_{i_{2}} \cap \cdots \cap A_{i_{k}}\right)=P\left(A_{i_{1}}\right) P\left(A_{i_{2}}\right) \cdots P\left(A_{i_{k}}\right)
$$

- An infinite collection is mutually independent if any finite subset of events is mutually independent
- 'mutually' \Rightarrow 'pairwise' but not vice versa

Eventually and Infinitely Often

- A probability space (Ω, \mathcal{A}, P) and an infinite sequence of events $\left\{A_{n}\right\}$, define

$$
\lim \inf A_{n}=\bigcup_{n=1}^{\infty}\left(\bigcap_{k=n}^{\infty} A_{k}\right), \lim \sup A_{n}=\bigcap_{n=1}^{\infty}\left(\bigcup_{k=n}^{\infty} A_{k}\right)
$$

- $\omega \in \liminf A_{n}$ iff there is an N such that $\omega \in A_{n}$ for all $n>N$, that is, the event liminf A_{n} occurs eventually,

$$
\left\{A_{n} \text { eventually }\right\}
$$

- $\omega \in \lim \sup A_{n}$ iff for any N there is an $n>N$ such that $\omega \in A_{n}$, that is, the event $\lim \sup A_{n}$ occurs infinitely often

$$
\left\{A_{n} \text { i.o. }\right\}
$$

Borel-Cantelli

- The Borel-Cantelli lemma: A probability space (Ω, \mathcal{A}, P) and an infinite sequence of events $\left\{A_{n}\right\}$
(1) if $\sum_{n} P\left(A_{n}\right)<\infty$, then

$$
P\left(\left\{A_{n} \text { i.o }\right\}\right)=0
$$

(2) if the events $\left\{A_{n}\right\}$ are mutually independent and $\sum_{n} P\left(A_{n}\right)=\infty$, then

$$
P\left(\left\{A_{n} \text { i.o }\right\}\right)=1
$$

Random Variables

- A probability space (Ω, \mathcal{A}, P). A real-valued function $X(\omega)$ on Ω is called a random variable if it's measurable w.r.t. (Ω, \mathcal{A})
- Recall: measurable $\Rightarrow X^{-1}(O) \in \mathcal{A}$ for any open $O \subset \mathbb{R}$ $\Longleftrightarrow X^{-1}(A) \in \mathcal{A}$ for any $A \in \mathcal{B}$ (the Borel sets)
- Notation:
- the event $\{\omega: X(\omega) \in B\} \rightarrow{ }^{\prime} X \in B^{\prime}$
- $P(\{X \in A\} \cap\{X \in B\}) \rightarrow{ }^{\prime} P(X \in A, X \in B)^{\prime}$, etc.

Distributions

- X is measurable $\Rightarrow P(X \in B)$ is well-defined for any $B \in \mathcal{B}$
- The distribution of X is the function $\mu_{X}(B)=P(X \in B)$, for $B \in \mathcal{B}$
- μ_{X} is a probability measure on $(\mathbb{R}, \mathcal{B})$
- The probability distribution function of X is the real-valued function

$$
F_{X}(x)=P(\{\omega: X(\omega) \leq x\})=(\text { notation })=P(X \leq x)
$$

- F_{X} is (obviously) the distribution function of the finite measure μ_{X} on $(\mathbb{R}, \mathcal{B})$, i.e.

$$
F_{X}(x)=\mu_{X}((-\infty, x])
$$

Independence

- Two random variables X and Y are pairwise independent if the events $\{X \in A\}$ and $\{Y \in B\}$ are independent for any A and B in \mathcal{B}
- A collection of random variables X_{1}, \ldots, X_{n} is mutually independent if the events $\left\{X_{i} \in B_{i}\right\}$ are mutually independent for all $B_{i} \in \mathcal{B}$

Expectation

- For a random variable on (Ω, \mathcal{A}, P), the expectation of X is defined as

$$
E[X]=\int_{\Omega} X(\omega) d P(\omega)
$$

- For any Borel-measurable real-valued function g

$$
E[g(X)]=\int g(x) d F_{X}(x)=\int g(x) d \mu_{X}(x)
$$

in particular

$$
E[X]=\int x d \mu_{X}(x)
$$

Variance

- The variance of X,

$$
\operatorname{Var}(X)=E\left[(X-E[X])^{2}\right]
$$

- Chebyshev's inequality: For any $\varepsilon>0$,

$$
P(|X-E[X]| \geq \varepsilon) \leq \frac{\operatorname{Var}(X)}{\varepsilon^{2}}
$$

- Kolmogorov's inequality: For mutually independent random variables $\left\{X_{k}\right\}_{k=1}^{n}$ with $\operatorname{Var}\left(X_{k}\right)<\infty$, set $S_{j}=\sum_{k=1}^{j} X_{k}$, $1 \leq j \leq n$, then for any $\varepsilon>0$

$$
P\left(\max _{j}\left|S_{j}-E\left[S_{j}\right]\right| \geq \varepsilon\right) \leq \frac{\operatorname{Var}\left(S_{n}\right)}{\varepsilon^{2}}
$$

($n=1 \Rightarrow$ Chebyshev)

The Law of Large Numbers

- A sequence $\left\{X_{n}\right\}$ is iid if the random variables X_{n} all have the same distribution and are mutually independent
- For any iid sequence $\left\{X_{n}\right\}$ with $\mu=E\left[X_{n}\right]<\infty$, the event

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} X_{k}=\mu
$$

occurs with probability one

- Toward the end of the course, we will generalize this result to stationary and ergodic random processes. . .
- $S_{n}=n^{-1} \sum_{n} X_{n} \rightarrow \mu$ with probability one $\Rightarrow S_{n} \rightarrow \mu$ in probability, i.e.,

$$
\lim _{n \rightarrow \infty} P\left(\left\{\left|S_{n}-\mu\right| \geq \varepsilon\right\}\right)=0
$$

for each $\varepsilon>0$

- in general 'in probability' does not imply 'with probability one' (convergence in measure does not imply convergence a.e.)

The Law of Large Numbers: Proof

- Lemma 1: For a nonnegative random variable X

$$
\sum_{n=1}^{\infty} P(X \geq n) \leq E[X] \leq \sum_{n=0}^{\infty} P(X \geq n)
$$

- Lemma 2: For mutually independent random variables $\left\{X_{n}\right\}$ with $\sum_{n} \operatorname{Var}\left(X_{n}\right)<\infty$ it holds that $\sum_{n}\left(X_{n}-E\left[X_{n}\right]\right)$ converges with probability one
- Lemma 3 (Kronecker's Lemma): Given a sequence $\left\{a_{n}\right\}$ with $0 \leq a_{1} \leq a_{2} \leq \cdots$ and $\lim a_{n}=\infty$, and another sequence $\left\{x_{k}\right\}$ such that $\lim \sum_{k} x_{k}$ exists, then

$$
\lim _{n \rightarrow \infty} \frac{1}{a_{n}} \sum_{k=1}^{n} a_{k} x_{k}=0
$$

- Assume without loss of generality (why?) that $\mu=0$
- Lemma $1 \Rightarrow$

$$
\sum_{n=1} P\left(\left|X_{n}\right| \geq n\right)=\sum_{n=1} P\left(\left|X_{1}\right| \geq n\right)<\infty
$$

- Let $E=\left\{\left|X_{k}\right| \geq k\right.$ i.o. $\}$, Borel-Cantelli $\Rightarrow P(E)=0 \Rightarrow$ we can concentrate on $\omega \in E^{c}$
- Let $Y_{n}=X_{n} \chi_{\left\{\left|X_{n}\right|<n\right\}}$; if $\omega \in E^{c}$ then there is an N such that $Y_{n}(\omega)=X_{n}(\omega)$ for $n \geq N$, thus for $\omega \in E^{c}$

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} X_{k}=0 \Longleftrightarrow \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} Y_{k}=0
$$

- Note that $E\left[Y_{n}\right] \rightarrow \mu=0$ as $n \rightarrow \infty$
- Letting $Z_{n}=n^{-1} Y_{n}$, it can be shown that $\sum_{n=1}^{\infty} \operatorname{Var}\left(Z_{n}\right)<\infty$ (requires some work). Hence, according to Lemma 2 the limit

$$
Z=\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(Z_{k}-E\left[Z_{k}\right]\right)
$$

exists with probability one.

- Furthermore, by Lemma 3

$$
\frac{1}{n} \sum_{k=1}^{n}\left(Y_{k}-E\left[Y_{k}\right]\right)=\frac{1}{n} \sum_{k=1}^{n} k\left(Z_{k}-E\left[Z_{k}\right]\right) \rightarrow 0
$$

where also

$$
\frac{1}{n} \sum_{k=1}^{n} E\left[Y_{k}\right] \rightarrow 0
$$

since $E\left[Y_{k}\right] \rightarrow E\left[X_{k}\right]=E\left[X_{1}\right]=0$

Proof of Lemma 2

- Assume w.o. loss of generality that $E\left[X_{n}\right]=0$, set $S_{n}=\sum_{k=1}^{n} X_{k}$
- For $E_{n} \in \mathcal{A}$ with $E_{1} \subset E_{2} \subset \cdots$ it holds that

$$
P\left(\bigcup_{n} E_{n}\right)=\lim _{n \rightarrow \infty} P\left(E_{n}\right)
$$

Therefore, for any $m \geq 0$

$$
\begin{aligned}
P\left(\bigcup_{k=1}^{\infty}\left\{\left|S_{m+k}-S_{m}\right| \geq \varepsilon\right\}\right) & =\lim _{n \rightarrow \infty} P\left(\bigcup_{k=1}^{n}\left\{\left|S_{m+k}-S_{m}\right| \geq \varepsilon\right\}\right) \\
& =\lim _{n \rightarrow \infty} P\left(\max _{1 \leq k \leq n}\left|S_{m+k}-S_{m}\right| \geq \varepsilon\right)
\end{aligned}
$$

- Let $Y_{k}=X_{m+k}$ and

$$
T_{k}=\sum_{j=1}^{k} Y_{j}=S_{m+k}-S_{m}
$$

then Kolmogorov's inequality implies

$$
\begin{aligned}
& P\left(\max _{1 \leq k \leq n}\left|T_{k}-E\left[T_{k}\right]\right| \geq \varepsilon\right)= \\
& P\left(\max _{1 \leq k \leq n}\left|S_{m+k}-S_{m}\right| \geq \varepsilon\right) \leq \frac{\operatorname{Var}\left(S_{m+n}-S_{m}\right)}{\varepsilon^{2}}=\frac{1}{\varepsilon^{2}} \sum_{k=m+1}^{m+n} \operatorname{Var}\left(X_{k}\right)
\end{aligned}
$$

- Hence

$$
P\left(\bigcup_{k=1}^{\infty}\left\{\left|S_{m+k}-S_{m}\right| \geq \varepsilon\right\}\right) \leq \frac{1}{\varepsilon^{2}} \sum_{k=m+1}^{\infty} \operatorname{Var}\left(X_{k}\right)
$$

- Since $\sum_{n} \operatorname{Var}\left(X_{n}\right)<\infty$, we get for any $\varepsilon>0$

$$
\lim _{m \rightarrow \infty} P\left(\bigcup_{k=1}^{\infty}\left\{\left|S_{m+k}-S_{m}\right| \geq \varepsilon\right\}\right)=0
$$

- Now, let $E=\left\{\omega:\left\{S_{n}(\omega)\right\}\right.$ does not converge $\}$. Then $\omega \in E$ iff $\left\{S_{n}(\omega)\right\}$ is not a Cauchy sequence \Rightarrow for any n there is a k and an r such that $\left|S_{n+k}-S_{n}\right| \geq r^{-1}$. Hence, equivalently,

$$
E=\bigcup_{r=1}^{\infty}\left(\bigcap_{n}\left(\bigcup_{k}\left\{\left|S_{n+k}-S_{n}\right| \geq \frac{1}{r}\right\}\right)\right)
$$

- For $F_{1} \supset F_{2} \supset F_{3} \cdots, P\left(\cap_{k} F_{k}\right)=\lim P\left(F_{k}\right)$, hence for any $r>0$

$$
\begin{aligned}
& P\left(\bigcap_{n=1}^{\infty}\left(\bigcup_{k}\left\{\left|S_{n+k}-S_{n}\right| \geq \frac{1}{r}\right\}\right)\right)=P\left(\bigcap_{n=1}^{\infty}\left(\bigcap_{\ell=1}^{n}\left(\bigcup_{k}\left\{\left|S_{\ell+k}-S_{\ell}\right| \geq \frac{1}{r}\right\}\right)\right)\right) \\
& \quad=\lim _{n \rightarrow \infty} P\left(\bigcap_{\ell=1}^{n}\left(\bigcup_{k}\left\{\left|S_{\ell+k}-S_{\ell}\right| \geq \frac{1}{r}\right\}\right)\right) \leq \lim _{n \rightarrow \infty} P\left(\bigcup_{k}\left\{\left|S_{n+k}-S_{n}\right| \geq \frac{1}{r}\right\}\right)
\end{aligned}
$$

