
Probability and Random Processes
Lecture 5

• Probability and random variables

• The law of large numbers
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Why Measure Theoretic Probability?

• Stronger limit theorems

• Conditional probability/expectation

• Proper theory for continuous and mixed random variables

Mikael Skoglund, Probability and random processes 2/21



Probability Space

• A probability space is a measure space (Ω,A, P )
• the sample space Ω is the ’universe,’ i.e. the set of all possible

outcomes
• the event class A is a σ-algebra of measurable sets called

events
• the probability measure is a measure on events in A with the

property P (Ω) = 1
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Interpretation

• A random experiment generates an outcome ω ∈ Ω

• For each A ∈ A either ω ∈ A or ω /∈ A
• An event A in A occurs if ω ∈ A with probability P (A)

• since A is the σ-algebra of measurable sets, we are ensured
that all ’reasonable’ combinations of events and sequences of
events are measurable, i.e., have probabilities
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With Probability One

• An event E ∈ A occurs with probability one if P (E) = 1
• almost everywhere, almost certainly, almost surely,. . .
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Independence

• E and F in A are independent if P (E ∩ F ) = P (E)P (F )

• The events in a collection A1, . . . , An are
• pairwise independent if Ai and Aj are independent for i 6= j
• mutually independent if for any {i1, i2, . . . , ik} ⊆ {1, 2, . . . , n}

P (Ai1 ∩Ai2 ∩ · · · ∩Aik) = P (Ai1)P (Ai2) · · ·P (Aik)

• An infinite collection is mutually independent if any finite
subset of events is mutually independent

• ’mutually’ ⇒ ’pairwise’ but not vice versa
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Eventually and Infinitely Often

• A probability space (Ω,A, P ) and an infinite sequence of
events {An}, define

lim inf An =

∞⋃

n=1

( ∞⋂

k=n

Ak

)
, lim supAn =

∞⋂

n=1

( ∞⋃

k=n

Ak

)

• ω ∈ lim inf An iff there is an N such that ω ∈ An for all
n > N , that is, the event lim inf An occurs eventually,

{An eventually}

• ω ∈ lim supAn iff for any N there is an n > N such that
ω ∈ An, that is, the event lim supAn occurs infinitely often

{An i.o.}
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Borel–Cantelli

• The Borel–Cantelli lemma: A probability space (Ω,A, P ) and
an infinite sequence of events {An}

1 if
∑

n P (An) <∞, then

P ({An i.o}) = 0

2 if the events {An} are mutually independent and∑
n P (An) =∞, then

P ({An i.o}) = 1
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Random Variables

• A probability space (Ω,A, P ). A real-valued function X(ω) on
Ω is called a random variable if it’s measurable w.r.t. (Ω,A)
• Recall: measurable ⇒ X−1(O) ∈ A for any open O ⊂ R

⇐⇒ X−1(A) ∈ A for any A ∈ B (the Borel sets)

• Notation:
• the event {ω : X(ω) ∈ B} → ’X ∈ B’
• P ({X ∈ A} ∩ {X ∈ B})→ ’P (X ∈ A,X ∈ B)’, etc.
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Distributions

• X is measurable ⇒ P (X ∈ B) is well-defined for any B ∈ B
• The distribution of X is the function µX(B) = P (X ∈ B),

for B ∈ B
• µX is a probability measure on (R,B)

• The probability distribution function of X is the real-valued
function

FX(x) = P ({ω : X(ω) ≤ x}) = (notation) = P (X ≤ x)

• FX is (obviously) the distribution function of the finite measure µX

on (R,B), i.e.
FX(x) = µX((−∞, x])
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Independence

• Two random variables X and Y are pairwise independent if
the events {X ∈ A} and {Y ∈ B} are independent for any A
and B in B

• A collection of random variables X1, . . . , Xn is mutually
independent if the events {Xi ∈ Bi} are mutually
independent for all Bi ∈ B
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Expectation

• For a random variable on (Ω,A, P ), the expectation of X is
defined as

E[X] =

∫

Ω
X(ω)dP (ω)

• For any Borel-measurable real-valued function g

E[g(X)] =

∫
g(x)dFX(x) =

∫
g(x)dµX(x)

in particular

E[X] =

∫
xdµX(x)
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Variance

• The variance of X,

Var(X) = E[(X − E[X])2]

• Chebyshev’s inequality: For any ε > 0,

P (|X − E[X]| ≥ ε) ≤ Var(X)

ε2

• Kolmogorov’s inequality: For mutually independent random
variables {Xk}nk=1 with Var(Xk) <∞, set Sj =

∑j
k=1Xk,

1 ≤ j ≤ n, then for any ε > 0

P

(
max

j
|Sj − E[Sj ]| ≥ ε

)
≤ Var(Sn)

ε2

(n = 1⇒ Chebyshev)
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The Law of Large Numbers

• A sequence {Xn} is iid if the random variables Xn all have
the same distribution and are mutually independent

• For any iid sequence {Xn} with µ = E[Xn] <∞, the event

lim
n→∞

1

n

n∑

k=1

Xk = µ

occurs with probability one

• Toward the end of the course, we will generalize this result to

stationary and ergodic random processes. . .
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• Sn = n−1
∑

nXn → µ with probability one ⇒ Sn → µ in
probability, i.e.,

lim
n→∞

P ({|Sn − µ| ≥ ε}) = 0

for each ε > 0

• in general ’in probability’ does not imply ’with probability one’
(convergence in measure does not imply convergence a.e.)
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The Law of Large Numbers: Proof

• Lemma 1: For a nonnegative random variable X

∞∑

n=1

P (X ≥ n) ≤ E[X] ≤
∞∑

n=0

P (X ≥ n)

• Lemma 2: For mutually independent random variables {Xn}
with

∑
n Var(Xn) <∞ it holds that

∑
n(Xn − E[Xn])

converges with probability one

• Lemma 3 (Kronecker’s Lemma): Given a sequence {an} with
0 ≤ a1 ≤ a2 ≤ · · · and lim an =∞, and another sequence
{xk} such that lim

∑
k xk exists, then

lim
n→∞

1

an

n∑

k=1

akxk = 0
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• Assume without loss of generality (why?) that µ = 0

• Lemma 1 ⇒
∑

n=1

P (|Xn| ≥ n) =
∑

n=1

P (|X1| ≥ n) <∞

• Let E = {|Xk| ≥ k i.o.}, Borel–Cantelli ⇒ P (E) = 0⇒ we
can concentrate on ω ∈ Ec

• Let Yn = Xnχ{|Xn|<n}; if ω ∈ Ec then there is an N such
that Yn(ω) = Xn(ω) for n ≥ N , thus for ω ∈ Ec

lim
n→∞

1

n

n∑

k=1

Xk = 0 ⇐⇒ lim
n→∞

1

n

n∑

k=1

Yk = 0

• Note that E[Yn]→ µ = 0 as n→∞
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• Letting Zn = n−1Yn, it can be shown that∑∞
n=1 Var(Zn) <∞ (requires some work). Hence, according

to Lemma 2 the limit

Z = lim
n→∞

n∑

k=1

(Zk − E[Zk])

exists with probability one.

• Furthermore, by Lemma 3

1

n

n∑

k=1

(Yk − E[Yk]) =
1

n

n∑

k=1

k(Zk − E[Zk])→ 0

where also 1

n

n∑

k=1

E[Yk]→ 0

since E[Yk]→ E[Xk] = E[X1] = 0
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Proof of Lemma 2

• Assume w.o. loss of generality that E[Xn] = 0, set Sn =
∑n

k=1Xk

• For En ∈ A with E1 ⊂ E2 ⊂ · · · it holds that

P

(⋃

n

En

)
= lim

n→∞
P (En)

Therefore, for any m ≥ 0

P

( ∞⋃

k=1

{|Sm+k − Sm| ≥ ε}
)

= lim
n→∞

P

(
n⋃

k=1

{|Sm+k − Sm| ≥ ε}
)

= lim
n→∞

P

(
max

1≤k≤n
|Sm+k − Sm| ≥ ε

)
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• Let Yk = Xm+k and

Tk =
k∑

j=1

Yj = Sm+k − Sm,

then Kolmogorov’s inequality implies

P

(
max

1≤k≤n
|Tk − E[Tk]| ≥ ε

)
=

P

(
max

1≤k≤n
|Sm+k − Sm| ≥ ε

)
≤ Var(Sm+n − Sm)

ε2
=

1

ε2

m+n∑

k=m+1

Var(Xk)

• Hence

P

( ∞⋃

k=1

{|Sm+k − Sm| ≥ ε}
)
≤ 1

ε2

∞∑

k=m+1

Var(Xk)
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• Since
∑

n Var(Xn) <∞, we get for any ε > 0

lim
m→∞

P

( ∞⋃

k=1

{|Sm+k − Sm| ≥ ε}
)

= 0

• Now, let E = {ω : {Sn(ω)} does not converge}. Then ω ∈ E iff
{Sn(ω)} is not a Cauchy sequence ⇒ for any n there is a k and an
r such that |Sn+k − Sn| ≥ r−1. Hence, equivalently,

E =

∞⋃

r=1

(⋂

n

(⋃

k

{
|Sn+k − Sn| ≥

1

r

}))

• For F1 ⊃ F2 ⊃ F3 · · · , P (∩kFk) = limP (Fk), hence for any r > 0

P

( ∞⋂

n=1

(⋃

k

{
|Sn+k − Sn| ≥ 1

r

}))
= P

( ∞⋂

n=1

(
n⋂

`=1

(⋃

k

{
|S`+k − S`| ≥ 1

r

})))

= lim
n→∞

P

(
n⋂

`=1

(⋃

k

{
|S`+k − S`| ≥ 1

r

}))
≤ lim

n→∞
P

(⋃

k

{
|Sn+k − Sn| ≥ 1

r

})
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