Probability and Random Processes Lecture 7

- Conditional probability and expectation
- Decomposition of measures

Mikael Skoglund, Probability and random processes

Conditional Probability

- A probability space (Ω, \mathcal{A}, P)
- An event $F \in \mathcal{A}$ with P(F) > 0; the σ -algebra generated by F, $\mathcal{G} = \sigma(\{F\}) = \{\emptyset, F, F^c, \Omega\}$
- Elementary conditional probability of $E \in \mathcal{A}$ given F

$$P(E|F) = \frac{P(E \cap F)}{P(F)}$$

The conditional probability of E ∈ A conditioned on G =
"the probability of E knowing which events in G occurred" =
"probability of E knowing whether F or F^c occurred"

$$P(E|\mathcal{G}) = P(E|F)\chi_F(\omega) + P(E|F^c)\chi_{F^c}(\omega)$$

a function $:\Omega \to \mathbb{R}$

- Note that $P(E|\mathcal{G})$
 - is a random variable on (Ω, \mathcal{A}, P) ;
 - is *G*-measurable;

and that

$$P(G \cap E) = \int_G P(E|\mathcal{G})dP, \ G \in \mathcal{G}$$

• A basis for generalizing $P(E|\mathcal{G})$ to conditioning on arbitrary $\sigma\text{-algebras}$

Mikael Skoglund, Probability and random processes

• Given (Ω, \mathcal{A}, P) , $E \in \mathcal{A}$ and $\mathcal{G} \subset \mathcal{A}$, there exists a nonnegative \mathcal{G} -measurable function $P(E|\mathcal{G})$ such that

$$P(G \cap E) = \int_{G} P(E|\mathcal{G}) dP, \ G \in \mathcal{G}$$

Also, $P(E|\mathcal{G})$ is unique P-a.e.

• Proof: Define $\mu_E(G) = P(G \cap E)$ for any $G \in \mathcal{G}$, then $\mu_E \ll P$ and

$$P(E|\mathcal{G}) = \frac{d\mu_E}{dP}$$

- The function $P(E|\mathcal{G})$ is called the conditional probability of E given \mathcal{G}
 - "the probability of E knowing which events in \mathcal{G} occurred"

- Again, for fixed \mathcal{G} and E, the entity $P(E|\mathcal{G})$ is a function $f(\omega) = P(E|\mathcal{G})(\omega)$ on Ω
- Alternatively, by instead fixing ${\cal G}$ and ω we get a set function

$$m(E) = P(E|\mathcal{G})(\omega), \ E \in \mathcal{A}$$

- If m(E) is a probability measure on (Ω, \mathcal{A}) then $P(E|\mathcal{G})$ is said to be regular
 - $P(E|\mathcal{G})$ is in general not necessarily regular...
- If the space (Ω, A) is standard (more about this later in the course), then m(E) is a probability measure

Mikael Skoglund, Probability and random processes

Conditioning on a Random Variable

- Given (Ω, \mathcal{A}, P) and a random variable X, let $\sigma(X) =$ smallest $\mathcal{F} \subset \mathcal{A}$ such that X is (still) measurable w.r.t. $\mathcal{F} =$ the σ -algebra generated by X,
 - σ(X) is exactly the class of events for which you can get to know whether they occured or not by observing X
- The conditional probability of $E \in \mathcal{A}$ given X is defined as

$$P(E|X) = P(E|\sigma(X))$$

Signed Measure

- Given a measurable space (Ω, \mathcal{A}) , a signed measure ν on \mathcal{A} is an extended real-valued function such that
 - $\nu(\emptyset) = 0$
 - for a sequence $\{A_i\}$ of pairwise disjoint sets in \mathcal{A}

$$\nu\left(\bigcup_{i} A_{i}\right) = \sum_{i} \nu(A_{i})$$

(i.e., simply a measure that doesn't need to be positive)

Mikael Skoglund, Probability and random processes

Radon-Nikodym for Signed Measures

If μ is a σ-finite measure and ν a finite signed measure on (Ω, A), and also ν ≪ μ, then there is an integrable real-valued A-measurable function f on Ω such that

$$\nu(A) = \int_A f d\mu$$

for any $A \in \mathcal{A}$. Furthermore, f is unique μ -a.e.

• The function f is the Radon–Nikodym derivative of ν w.r.t. μ , notation $f = \frac{d\nu}{d\mu}$

Conditional Expectation

• Given (Ω, \mathcal{A}, P) , a random variable Y (with $E[|Y|] < \infty$) and $\mathcal{G} \subset \mathcal{A}$, there exists a \mathcal{G} -measurable function $E[Y|\mathcal{G}]$ such that

$$\int_{G} Y dP = \int_{G} E[Y|\mathcal{G}] dP, \ G \in \mathcal{G}$$

Also, the function $E[Y|\mathcal{G}]$ is unique *P*-a.e.

• Proof: Define $\mu_Y(G) = \int_G Y dP$ for any $G \in \mathcal{G}$, then $\mu_Y \ll P$ and

$$E[Y|\mathcal{G}] = \frac{d\mu_Y}{dP}$$

- The function $E[Y|\mathcal{G}]$ is called the conditional expectation of Y given $\mathcal G$
 - "the expectation of Y knowing which events in $\mathcal G$ occurred"

Mikael Skoglund, Probability and random processes

• Note that with
$$\mathcal{G}=\{\emptyset,\Omega\}$$
 and $G=\Omega$, we get

$$E[Y] = \int_{\Omega} Y dP = \int_{\Omega} E[Y|\mathcal{G}] dP \Rightarrow E[Y|\{\emptyset, \Omega\}] = E[Y] \ P\text{-a.e.}$$

(noting that the definition is verified also for $G = \emptyset$)

• If $\mathcal{G}_1 \subset \mathcal{G}_2 \subset \mathcal{A}$ then

$$E[E[Y|\mathcal{G}_1]|\mathcal{G}_2] = E[E[Y|\mathcal{G}_2]|\mathcal{G}_1] = E[Y|\mathcal{G}_1]$$
 P-a.e.

so in particular, for any $\mathcal{G}\subset\mathcal{A}$,

$$E[E[Y|\mathcal{G}]] = E[E[Y|\mathcal{G}]|\{\emptyset,\Omega\}] = E[Y|\{\emptyset,\Omega\}] = E[Y] \ \ P\text{-a.e.}$$

• If Z is (already) \mathcal{G} -measurable, then

$$E[ZY|\mathcal{G}] = ZE[Y|\mathcal{G}] P$$
-a.e.

Conditional Expectation vs. Probability

- The entity $E[Y|\mathcal{G}]$ is a function $g(\omega) = E[Y|\mathcal{G}](\omega)$
- If (Ω, \mathcal{A}) is standard, then $P(E|\mathcal{G})$ is regular $\Rightarrow m(E) = P(E|\mathcal{G})(\omega)$ is a probability measure on (Ω, \mathcal{A}) for fixed ω and \mathcal{G} . Furthermore, in this case

$$E[Y|\mathcal{G}] = \int Y(u)dm(u) = \int Y(u)dP(u|\mathcal{G})$$

 This interpretation for conditional expectation does not hold in general (for non-standard (Ω, A))

Mikael Skoglund, Probability and random processes

Projections and Atoms

Conditional expectation as a projection

- Given (Ω, \mathcal{A}, P) assume $\mathcal{G} \subset \mathcal{A}$ and let $\mathcal{M} = \{\mathcal{G}\text{-measurable functions}\}$
- For an \mathcal{A} -measurable Y, let $g(\omega) = E[Y|\mathcal{G}](\omega)$, then

$$E[(Y-g)^2] \leq E[(Y-g')^2] \ \text{ for all } g' \in \mathcal{M}$$

• If Y is already in \mathcal{M} , then $g(\omega) = Y(\omega)$ P-a.e.

Conditioning on a random variable

- For two random variables X and Y, $E[Y|X] = E[Y|\sigma(X)]$
- If $E|Y| < \infty$ then there is a Borel-measurable $f : \mathbb{R} \to \mathbb{R}$ such that $E[Y|X] = f(X(\omega))$ *P*-a.e.
- Thus $E[Y|X](\omega)$ is constant on the sets $\{\omega : X(\omega) = x\}$

Atoms

- $A \in \mathcal{A}$ is an atom of \mathcal{A} if the only set in \mathcal{A} which is a proper subset of A is \emptyset
- If there is a countable $\{A_i\}$ such that $\mathcal{A} = \sigma(\{A_i\})$ then \mathcal{A} is separable
- (Ω, \mathcal{A}) standard $\Rightarrow \mathcal{A}$ separable [more about "standard" later]
- \mathcal{A} separable \Rightarrow every $A \in \mathcal{A}$ is a union of atoms
- If f is \mathcal{A} -measurable, then f is constant on the atoms of \mathcal{A}
- If $\mathcal A$ is separable and $\mathcal G\subset \mathcal A$, then the atoms of $\mathcal G$ are bigger
- If G is an atom of $\mathcal{G} \subset \mathcal{A}$ and P(G) > 0, then

$$E[Y|\mathcal{G}](\omega) = \frac{1}{P(G)} \int_G Y dP, \quad \text{for } \omega \in G$$

"smoothing over atoms"

Mikael Skoglund, Probability and random processes

13/16

Mutually Singular Measures

- Given (Ω, \mathcal{A}) , two measures μ_1 and μ_2 are mutually singular, notation $\mu_1 \perp \mu_2$, if there is a set $E \in \mathcal{A}$ such that $\mu_1(E^c) = 0$ and $\mu_2(E) = 0$.
- Lebesgue decomposition: Given a σ -finite measure space $(\Omega, \mathcal{A}, \mu)$ and an additional σ -finite measure ν on \mathcal{A} , there exist measures ν_1 and ν_2 on \mathcal{A} such that $\nu_1 \ll \mu$, $\nu_2 \perp \mu$ and $\nu = \nu_1 + \nu_2$. This representation is unique.

Continuous and Discrete Measures

- For a measure space $(\Omega, \mathcal{A}, \mu)$ such that $\{x\} \in \mathcal{A}$ for all $x \in \Omega$:
 - $x \in \Omega$ is an atom of μ if $\mu(\{x\}) > 0$
 - μ is continuous if it has no atoms
 - μ is discrete if there is a countable $K\subset \Omega$ such that $\mu(K^c)=0$
- Let $(\Omega, \mathcal{A}, \mu)$ be a σ -finite measure space and ν an additional σ -finite measure on \mathcal{A} . Assume that $\{x\} \in \mathcal{A}$ for all $x \in \Omega$. Then there exist measures ν_{ac} , ν_{sc} and ν_{d} such that
 - $u_{\sf ac} \ll \mu, \, \nu_{\sf sc} \perp \mu \, \, {\sf an} \, \, \nu_{\sf d} \perp \mu$
 - $\nu_{\rm sc}$ is continuous and $\nu_{\rm d}$ is discrete
 - $\nu = \nu_{ac} + \nu_{sc} + \nu_{d}$, uniquely

Mikael Skoglund, Probability and random processes

15/16

Decomposition on the Real Line

- Let ν be a finite measure on $(\mathbb{R}, \mathcal{B})$, then ν can be decomposed uniquely as $\nu = \nu_{ac} + \nu_{sc} + \nu_{d}$ where
 - ν_{ac} is absolutely continuous w.r.t. Lebesgue measure
 - $\nu_{\rm sc}$ is continuous and singular w.r.t Lebesgue measure
 - $\nu_{\rm d}$ is discrete
- Furthermore, if F_{ν} is the distribution function of ν , then

$$\nu(\{x\}) = F_{\nu}(x) - \lim_{x' \to x^{-}} F_{\nu}(x')$$

That is, if there are atoms, they are the points of discontinuity of F_{ν}