Probability and Random Processes

Lecture 8

e Topologies and metrics

e Standard spaces
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Topological Spaces

e How do we measure “closeness” for objects in abstract spaces?

e Consider R and the collection O of open intervals, or more
generally open sets

e f:R — R is continuous at b if f(x) is close to f(b) for all x
sufficiently close to b

<= for each € > 0 there is a 6 > 0 such that
f(x) € (f(b) —¢, f(b)+¢) forall z € (b—9,b+0)
<= for each O; € O containing f(b), there is a set O; € O
containing b such that f(z) € Oy for all x € O
— f10)eOforal 0O

e Hence, the class of open sets appears to be fundamental in
making statements about “closeness” and “limits”
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Fundamental properties of sets in O (on the real line):

e Rand () arein O
o if Aand B arein O thensois ANB
e if {O;} are all open, then so is U;O;

a characterization of “open sets” in the general case

For a given nonempty set €2, a class T of subsets is a
topology on € if

O Q0eT

O 0.,,0,T=0,N0€T

©SCT =UpesOeT

The pair (£2,7T) is a topological space and the sets in T are
called T-open, or simply open
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Continuous and Borel Measurable Functions

Let A= (2,7) and B = (A,S) be topological spaces, then a
function f: Q — A is continuous if O € S = f~1(0) e T

Given A = (0, T), the o-algebra generated by 7 is the Borel
o-algebra on (2, T), notation o(.A)

(Q,0(A)) is the (measurable) Borel space corresponding to
A=(Q,7)

Given A = (Q,7) and B = (A,S), a function f: Q — A'is
Borel measurable if O € o(B) = f~1(0) € o(A)

e usually the default for “measurable function” is “Borel
measurable”
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Metric Spaces

e For a given set €2, a function p: 2 X 2 — R is a metric if for
all x,y,z € Q

@ p(zr,y) >0with=onlyifz=y
® p(r,y) = p(y, )
© o(z,2) < p(z,y) + p(y, 2)

e The pair (2, p) is a metric space

Mikael Skoglund, Probability and random processes 5/16

Metric Spaces as Topological Spaces

o Given (92, p), the set B,(z) = {y € Q: p(x,y) < r} is called
the open ball of radius r centered at x

e Aset O in Q is open if for any = € O there is an r such that
B.(x) C O,
= defines a topology 7, on (2; the topology induced by p
e Two metrics p1 and py are equivalent if 7, =7,
e (Q,7) is metrizable if there is a metric p such that 7 =7,

e Example: (R",7) with 7 =7, using p(z,y) = ||z — y||
(ordinary Euclidean distance)
e for R™ we always assume this topology
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Sequences and Completeness

A topological space (€2, 7) and a sequence {x,}, =, € {2
The sequence converges to x € Q if
e for each O € T such that = € O there is an N such that
z, €0 foralln >N
In a metric space (€2, p), a sequence {x,}

e is a Cauchy sequence if for each € > 0 there is an N such that
P( Ty, Tm) < e foralln,m >N
e converges to a point x if lim, p(z,,x) =0

(€2, p) is complete if all Cauchy sequences converge to a point
in €2

(Q,T) is completely metrizable if there is a complete metric
space (I', p) and a 1-to-1 mapping between (2,7) and (I, 7,)
that is continuous in both directions
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Limit Points, Closure

A topological space (€2, 7). Given a set £ C €, a point x € )
is a limit point of Eif ONE # () for all O € T with z € O

The set of all limit points of E = the closure of E, notation E
A set E is closed if E€ is open

E is the smallest closed set that contains E
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Separability

e Aset Eisdensein Qif E =
e c.f. the rational numbers QQ are dense in R
o A topological space (£2,7) is separable if there is a countable
set E C Q such that £ = ()
e c.f. R is separable since Q is countable and R = Q
e (2,7) is a Polish space if it is completely metrizable and
separable
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Compactness

e Given a set F, a collection S of sets is a covering of F if

E CUgesS
e Given E, if Sis a covering of E and 8’ C S is also a
covering, then S’ is a subcovering
e In (Q,7) a covering Sisopenif SC T
e Given (£2,7), a subset ' C Q is compact if every open
covering of ¥ has a finite subcovering
e FF C R™is compact <= FE is closed and bounded
(Q,T) is compact if Q is compact
e R™ is not compact...
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Standard Spaces

Three kinds of “standard” (probability) spaces
e Standard Borel spaces: Borel equivalence to ([0, 1], B([0, 1]))

e Standard spaces as defined by Gray: The “countable extension
property” (next lecture. . .)

e |ebesgue spaces: Isomorphic to a mixture of
([0,1], £(]0,1]), A) and a countable space
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Standard Borel Spaces

e Two measurable spaces (2, .A) and (I', G) are equivalent if
there is a 1-to-1 mapping between them that is measurable in
both directions

o If (2, A) and (I', G) are Borel spaces corresponding to
topologies on €2 and I', then they are called Borel equivalent if
they are equivalent

e A standard Borel space is a measurable space that is Borel
equivalent to either ([0, 1], B) or a subspace of ([0, 1], B),
where B = B([0, 1]) are the Borel subsets of [0, 1], i.e. the
smallest o-algebra that contains all the open intervals in [0, 1]
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e Uncountable standard Borel = Borel equivalent to ([0, 1], B)

e Hence, by “subspace” (£2,.4) we need only consider
@ Q C [0,1] is finite, and A =P(Q) C B
(= the power set = collection of all subsets)
® Q C [0,1] is countable, and again A =P () C B
o If £=(Q,T) is Polish, then (2,0(&)) is standard Borel
e sometimes used as the definition of “standard Borel”
e this case will be our default “standard” space
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Isomorphic Probability Spaces

Two probability spaces (€2, A, P) and (I', G, Q) are

e isomorphic if
® (2, A) and (T',G) are equivalent, with 1-to-1 mapping ¢
@ Forall Ac A P(A) =Q(¢p(A))
® Forall Ge g, Q(G)=P(¢ Q)

e isomorphic mod O if
® (A P)and (I',G, Q) are not isomorphic
@ there are sets Ay € A, Gy € G, with P(4p) = Q(Gy) =0
© (U A P)and (T',G, Q) are isomorphic when restricted to

points in 2\ Ag and I' \ G
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Lebesgue Spaces

e (Q,A, P)is a Lebesgue (probability) space if P is a probability
measure of the form aP; + (1 — a) P, a € [0, 1], and

@ (2, A, P) is complete

® P, has no atoms and (€2, A, P;) is isomorphic mod 0 to
([0, 1], £([0,1]), A)

© There are a countable number of points w; € €2, such that
with p; = P({w;}) we have Po(A) = >, 4 piforall Ae A
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Some Standard Borel Spaces

e Any finite set
e The rational numbers, and the irrational numbers
o (R™, B™) (with B" = the Borel sets C R")

e Separable Hilbert spaces, i.e., Hilbert spaces which admit a
countable basis; for example the space of square-integrable
functions with inner product

%QZ/MM

and metric p(f,g9) = ((f — g, f — g))'/?

Most abstractions corresponding to real-world phenomena result in
standard Borel spaces = one can almost always work with
([0,1], £, A) or ([0,1],B, A\|), plus a finite/countable space
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