
Probability and Random Processes
Lecture 8

• Topologies and metrics

• Standard spaces
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Topological Spaces

• How do we measure “closeness” for objects in abstract spaces?

• Consider R and the collection O of open intervals, or more
generally open sets

• f : R→ R is continuous at b if f(x) is close to f(b) for all x
sufficiently close to b

⇐⇒ for each ε > 0 there is a δ > 0 such that
f(x) ∈ (f(b)− ε, f(b) + ε) for all x ∈ (b− δ, b+ δ)

⇐⇒ for each O1 ∈ O containing f(b), there is a set O2 ∈ O
containing b such that f(x) ∈ O1 for all x ∈ O2

⇐⇒ f−1(O) ∈ O for all O ∈ O
• Hence, the class of open sets appears to be fundamental in

making statements about “closeness” and “limits”
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• Fundamental properties of sets in O (on the real line):
• R and ∅ are in O
• if A and B are in O then so is A ∩B
• if {Oi} are all open, then so is ∪iOi

⇒ a characterization of “open sets” in the general case

• For a given nonempty set Ω, a class T of subsets is a
topology on Ω if

1 Ω, ∅ ∈ T
2 O1, O2 ∈ T ⇒ O1 ∩O2 ∈ T
3 S ⊂ T ⇒ ⋃

O∈S O ∈ T
• The pair (Ω, T ) is a topological space and the sets in T are

called T -open, or simply open
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Continuous and Borel Measurable Functions

• Let A = (Ω, T ) and B = (Λ,S) be topological spaces, then a
function f : Ω→ Λ is continuous if O ∈ S ⇒ f−1(O) ∈ T

• Given A = (Ω, T ), the σ-algebra generated by T is the Borel
σ-algebra on (Ω, T ), notation σ(A)

• (Ω, σ(A)) is the (measurable) Borel space corresponding to
A = (Ω, T )

• Given A = (Ω, T ) and B = (Λ,S), a function f : Ω→ Λ is
Borel measurable if O ∈ σ(B)⇒ f−1(O) ∈ σ(A)

• usually the default for “measurable function” is “Borel
measurable”
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Metric Spaces

• For a given set Ω, a function ρ : Ω× Ω→ R is a metric if for
all x, y, z ∈ Ω

1 ρ(x, y) ≥ 0 with = only if x = y
2 ρ(x, y) = ρ(y, x)
3 ρ(x, z) ≤ ρ(x, y) + ρ(y, z)

• The pair (Ω, ρ) is a metric space
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Metric Spaces as Topological Spaces

• Given (Ω, ρ), the set Br(x) = {y ∈ Ω : ρ(x, y) < r} is called
the open ball of radius r centered at x

• A set O in Ω is open if for any x ∈ O there is an r such that
Br(x) ⊂ O,

⇒ defines a topology Tρ on Ω; the topology induced by ρ

• Two metrics ρ1 and ρ2 are equivalent if Tρ1 = Tρ2
• (Ω, T ) is metrizable if there is a metric ρ such that T = Tρ
• Example: (Rn, T ) with T = Tρ using ρ(x, y) = ‖x− y‖

(ordinary Euclidean distance)
• for Rn we always assume this topology
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Sequences and Completeness

• A topological space (Ω, T ) and a sequence {xn}, xn ∈ Ω

• The sequence converges to x ∈ Ω if
• for each O ∈ T such that x ∈ O there is an N such that
xn ∈ O for all n ≥ N

• In a metric space (Ω, ρ), a sequence {xn}
• is a Cauchy sequence if for each ε > 0 there is an N such that
ρ(xn, xm) < ε for all n,m ≥ N

• converges to a point x if limn ρ(xn, x) = 0

• (Ω, ρ) is complete if all Cauchy sequences converge to a point
in Ω

• (Ω, T ) is completely metrizable if there is a complete metric
space (Γ, ρ) and a 1-to-1 mapping between (Ω, T ) and (Γ, Tρ)
that is continuous in both directions
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Limit Points, Closure

• A topological space (Ω, T ). Given a set E ⊂ Ω, a point x ∈ Ω
is a limit point of E if O ∩ E 6= ∅ for all O ∈ T with x ∈ O

• The set of all limit points of E = the closure of E, notation E

• A set E is closed if Ec is open

• E is the smallest closed set that contains E
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Separability

• A set E is dense in Ω if E = Ω
• c.f. the rational numbers Q are dense in R

• A topological space (Ω, T ) is separable if there is a countable
set E ⊂ Ω such that E = Ω

• c.f. R is separable since Q is countable and R = Q

• (Ω, T ) is a Polish space if it is completely metrizable and
separable
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Compactness

• Given a set E, a collection S of sets is a covering of E if
E ⊂ ⋃

S∈S S

• Given E, if S is a covering of E and S ′ ⊂ S is also a
covering, then S ′ is a subcovering

• In (Ω, T ) a covering S is open if S ⊂ T
• Given (Ω, T ), a subset E ⊂ Ω is compact if every open

covering of E has a finite subcovering
• E ⊂ Rn is compact ⇐⇒ E is closed and bounded

• (Ω, T ) is compact if Ω is compact
• Rn is not compact. . .
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Standard Spaces

Three kinds of “standard” (probability) spaces

• Standard Borel spaces: Borel equivalence to ([0, 1],B([0, 1]))

• Standard spaces as defined by Gray: The “countable extension
property” (next lecture. . . )

• Lebesgue spaces: Isomorphic to a mixture of
([0, 1],L([0, 1]), λ) and a countable space
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Standard Borel Spaces

• Two measurable spaces (Ω,A) and (Γ,G) are equivalent if
there is a 1-to-1 mapping between them that is measurable in
both directions

• If (Ω,A) and (Γ,G) are Borel spaces corresponding to
topologies on Ω and Γ, then they are called Borel equivalent if
they are equivalent

• A standard Borel space is a measurable space that is Borel
equivalent to either ([0, 1],B) or a subspace of ([0, 1],B),
where B = B([0, 1]) are the Borel subsets of [0, 1], i.e. the
smallest σ-algebra that contains all the open intervals in [0, 1]
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• Uncountable standard Borel ⇒ Borel equivalent to ([0, 1],B)

• Hence, by “subspace” (Ω,A) we need only consider

1 Ω ⊂ [0, 1] is finite, and A = P(Ω) ⊂ B
(= the power set = collection of all subsets)

2 Ω ⊂ [0, 1] is countable, and again A = P(Ω) ⊂ B
• If E = (Ω, T ) is Polish, then (Ω, σ(E)) is standard Borel

• sometimes used as the definition of “standard Borel”
• this case will be our default “standard” space
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Isomorphic Probability Spaces

Two probability spaces (Ω,A, P ) and (Γ,G, Q) are

• isomorphic if

1 (Ω,A) and (Γ,G) are equivalent, with 1-to-1 mapping φ
2 For all A ∈ A, P (A) = Q(φ(A))
3 For all G ∈ G, Q(G) = P (φ−1(G))

• isomorphic mod 0 if

1 (Ω,A, P ) and (Γ,G, Q) are not isomorphic
2 there are sets A0 ∈ A, G0 ∈ G, with P (A0) = Q(G0) = 0
3 (Ω,A, P ) and (Γ,G, Q) are isomorphic when restricted to

points in Ω \A0 and Γ \G0
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Lebesgue Spaces

• (Ω,A, P ) is a Lebesgue (probability) space if P is a probability
measure of the form αP1 + (1− α)P2, α ∈ [0, 1], and

1 (Ω,A, P ) is complete
2 P1 has no atoms and (Ω,A, P1) is isomorphic mod 0 to

([0, 1],L([0, 1]), λ)
3 There are a countable number of points ωi ∈ Ω, such that

with pi = P ({ωi}) we have P2(A) =
∑

i:ωi∈A pi for all A ∈ A
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Some Standard Borel Spaces

• Any finite set

• The rational numbers, and the irrational numbers

• (Rn,Bn) (with Bn = the Borel sets ⊂ Rn)

• Separable Hilbert spaces, i.e., Hilbert spaces which admit a
countable basis; for example the space of square-integrable
functions with inner product

〈f, g〉 =

∫
fg dx

and metric ρ(f, g) = (〈f − g, f − g〉)1/2

Most abstractions corresponding to real-world phenomena result in
standard Borel spaces ⇒ one can almost always work with
([0, 1],L, λ) or ([0, 1],B, λ|B), plus a finite/countable space
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