Probability and Random Processes Lecture 8

- Topologies and metrics
- Standard spaces

Mikael Skoglund, Probability and random processes

Topological Spaces

- How do we measure "closeness" for objects in abstract spaces?
- Consider ${\mathbb R}$ and the collection ${\mathcal O}$ of open intervals, or more generally open sets
- $f:\mathbb{R}\to\mathbb{R}$ is continuous at b if f(x) is close to f(b) for all x sufficiently close to b
 - $\iff \text{ for each } \varepsilon > 0 \text{ there is a } \delta > 0 \text{ such that} \\ f(x) \in (f(b) \varepsilon, f(b) + \varepsilon) \text{ for all } x \in (b \delta, b + \delta)$
 - $\iff \text{ for each } O_1 \in \mathcal{O} \text{ containing } f(b), \text{ there is a set } O_2 \in \mathcal{O} \\ \text{ containing } b \text{ such that } f(x) \in O_1 \text{ for all } x \in O_2 \\ \iff f^{-1}(O) \in \mathcal{O} \text{ for all } O \in \mathcal{O} \end{cases}$
- Hence, the class of open sets appears to be fundamental in making statements about "closeness" and "limits"

- Fundamental properties of sets in \mathcal{O} (on the real line):
 - ${\mathbb R}$ and \emptyset are in ${\mathcal O}$
 - if A and B are in \mathcal{O} then so is $A \cap B$
 - if $\{O_i\}$ are all open, then so is $\cup_i O_i$
- \Rightarrow a characterization of "open sets" in the general case
 - For a given nonempty set $\Omega,$ a class ${\mathcal T}$ of subsets is a topology on Ω if
 - $0, \emptyset \in \mathcal{T}$

$$O_1, O_2 \in \mathcal{T} \Rightarrow O_1 \cap O_2 \in \mathcal{T}$$

- The pair (Ω, T) is a topological space and the sets in T are called T-open, or simply open

Mikael Skoglund, Probability and random processes

Continuous and Borel Measurable Functions

- Let $\mathcal{A} = (\Omega, \mathcal{T})$ and $\mathcal{B} = (\Lambda, \mathcal{S})$ be topological spaces, then a function $f: \Omega \to \Lambda$ is continuous if $O \in \mathcal{S} \Rightarrow f^{-1}(O) \in \mathcal{T}$
- Given $\mathcal{A} = (\Omega, \mathcal{T})$, the σ -algebra generated by \mathcal{T} is the Borel σ -algebra on (Ω, \mathcal{T}) , notation $\sigma(\mathcal{A})$
- $(\Omega, \sigma(\mathcal{A}))$ is the (measurable) Borel space corresponding to $\mathcal{A} = (\Omega, \mathcal{T})$
- Given $\mathcal{A} = (\Omega, \mathcal{T})$ and $\mathcal{B} = (\Lambda, \mathcal{S})$, a function $f : \Omega \to \Lambda$ is Borel measurable if $O \in \sigma(\mathcal{B}) \Rightarrow f^{-1}(O) \in \sigma(\mathcal{A})$
 - usually the default for "measurable function" is "Borel measurable"

Metric Spaces

- For a given set Ω , a function $\rho: \Omega \times \Omega \to \mathbb{R}$ is a metric if for all $x, y, z \in \Omega$
 - 1 $\rho(x,y) \ge 0$ with = only if x = y
 - **2** $\rho(x, y) = \rho(y, x)$
 - $\textbf{3} \ \rho(x,z) \leq \rho(x,y) + \rho(y,z)$
- The pair (Ω, ρ) is a metric space

Mikael Skoglund, Probability and random processes

Metric Spaces as Topological Spaces

- Given (Ω, ρ) , the set $B_r(x) = \{y \in \Omega : \rho(x, y) < r\}$ is called the open ball of radius r centered at x
- A set O in Ω is open if for any x ∈ O there is an r such that B_r(x) ⊂ O,
- \Rightarrow defines a topology $\mathcal{T}_{
 ho}$ on Ω ; the topology induced by ho
 - Two metrics ρ_1 and ρ_2 are equivalent if $\mathcal{T}_{\rho_1} = \mathcal{T}_{\rho_2}$
 - (Ω, \mathcal{T}) is metrizable if there is a metric ho such that $\mathcal{T} = \mathcal{T}_{
 ho}$
 - Example: $(\mathbb{R}^n, \mathcal{T})$ with $\mathcal{T} = \mathcal{T}_{\rho}$ using $\rho(x, y) = ||x y||$ (ordinary Euclidean distance)
 - for \mathbb{R}^n we always assume this topology

Sequences and Completeness

- A topological space (Ω, \mathcal{T}) and a sequence $\{x_n\}$, $x_n \in \Omega$
- The sequence converges to $x \in \Omega$ if
 - for each $O\in \mathcal{T}$ such that $x\in O$ there is an N such that $x_n\in O$ for all $n\geq N$
- In a metric space (Ω, ρ) , a sequence $\{x_n\}$
 - is a Cauchy sequence if for each $\varepsilon > 0$ there is an N such that $\rho(x_n, x_m) < \varepsilon$ for all $n, m \ge N$
 - converges to a point x if $\lim_{n \to \infty} \rho(x_n, x) = 0$
- (Ω,ρ) is complete if all Cauchy sequences converge to a point in Ω
- (Ω, \mathcal{T}) is completely metrizable if there is a complete metric space (Γ, ρ) and a 1-to-1 mapping between (Ω, \mathcal{T}) and $(\Gamma, \mathcal{T}_{\rho})$ that is continuous in both directions

Mikael Skoglund, Probability and random processes

Limit Points, Closure

- A topological space (Ω, T). Given a set E ⊂ Ω, a point x ∈ Ω is a limit point of E if O ∩ E ≠ Ø for all O ∈ T with x ∈ O
- The set of all limit points of E = the closure of E, notation \overline{E}
- A set E is closed if E^c is open
- \overline{E} is the smallest closed set that contains E

Separability

- A set E is dense in Ω if $\overline{E} = \Omega$
 - c.f. the rational numbers $\mathbb Q$ are dense in $\mathbb R$
- A topological space (Ω, \mathcal{T}) is separable if there is a countable set $E \subset \Omega$ such that $\overline{E} = \Omega$
 - c.f. $\mathbb R$ is separable since $\mathbb Q$ is countable and $\mathbb R=\overline Q$
- (Ω, \mathcal{T}) is a Polish space if it is completely metrizable and separable

Mikael Skoglund, Probability and random processes

Compactness

- Given a set E, a collection ${\mathcal S}$ of sets is a covering of E if $E\subset \bigcup_{S\in {\mathcal S}}S$
- Given E, if S is a covering of E and $S' \subset S$ is also a covering, then S' is a subcovering
- In (Ω, \mathcal{T}) a covering \mathcal{S} is open if $\mathcal{S} \subset \mathcal{T}$
- Given (Ω, \mathcal{T}) , a subset $E \subset \Omega$ is compact if every open covering of E has a finite subcovering
 - $E \subset \mathbb{R}^n$ is compact $\iff E$ is closed and bounded
- (Ω, \mathcal{T}) is compact if Ω is compact
 - \mathbb{R}^n is not compact...

Standard Spaces

Three kinds of "standard" (probability) spaces

- Standard Borel spaces: Borel equivalence to $([0,1],\mathcal{B}([0,1]))$
- Standard spaces as defined by Gray: The "countable extension property" (next lecture...)
- Lebesgue spaces: Isomorphic to a mixture of $([0,1],\mathcal{L}([0,1]),\lambda)$ and a countable space

Mikael Skoglund, Probability and random processes

Standard Borel Spaces

- Two measurable spaces (Ω, A) and (Γ, G) are equivalent if there is a 1-to-1 mapping between them that is measurable in both directions
- If (Ω, A) and (Γ, G) are Borel spaces corresponding to topologies on Ω and Γ, then they are called Borel equivalent if they are equivalent
- A standard Borel space is a measurable space that is Borel equivalent to either ([0, 1], B) or a subspace of ([0, 1], B), where B = B([0, 1]) are the Borel subsets of [0, 1], i.e. the smallest σ-algebra that contains all the open intervals in [0, 1]

- Uncountable standard Borel \Rightarrow Borel equivalent to $([0,1],\mathcal{B})$
- Hence, by "subspace" (Ω, \mathcal{A}) we need only consider
 - 1 $\Omega \subset [0,1]$ is finite, and $\mathcal{A} = \mathcal{P}(\Omega) \subset \mathcal{B}$
 - (= the power set = collection of all subsets)
 - 2 $\Omega \subset [0,1]$ is countable, and again $\mathcal{A} = \mathcal{P}(\Omega) \subset \mathcal{B}$
- If $\mathcal{E} = (\Omega, \mathcal{T})$ is Polish, then $(\Omega, \sigma(\mathcal{E}))$ is standard Borel
 - sometimes used as the definition of "standard Borel"
 - this case will be our default "standard" space

Mikael Skoglund, Probability and random processes

13/16

Isomorphic Probability Spaces

Two probability spaces (Ω, \mathcal{A}, P) and (Γ, \mathcal{G}, Q) are

- isomorphic if
 - **1** (Ω, \mathcal{A}) and (Γ, \mathcal{G}) are equivalent, with 1-to-1 mapping ϕ
 - **2** For all $A \in \mathcal{A}$, $P(A) = Q(\phi(A))$
 - **3** For all $G \in \mathcal{G}$, $Q(G) = P(\phi^{-1}(G))$
- isomorphic mod 0 if
 - **1** (Ω, \mathcal{A}, P) and (Γ, \mathcal{G}, Q) are not isomorphic
 - 2 there are sets $A_0 \in \mathcal{A}$, $G_0 \in \mathcal{G}$, with $P(A_0) = Q(G_0) = 0$
 - 3 (Ω, \mathcal{A}, P) and (Γ, \mathcal{G}, Q) are isomorphic when restricted to points in $\Omega \setminus A_0$ and $\Gamma \setminus G_0$

Lebesgue Spaces

- (Ω, \mathcal{A}, P) is a Lebesgue (probability) space if P is a probability measure of the form $\alpha P_1 + (1 \alpha)P_2$, $\alpha \in [0, 1]$, and
 - **1** (Ω, \mathcal{A}, P) is complete
 - 2 P_1 has no atoms and $(\Omega, \mathcal{A}, P_1)$ is isomorphic mod 0 to $([0, 1], \mathcal{L}([0, 1]), \lambda)$
 - **3** There are a countable number of points $\omega_i \in \Omega$, such that with $p_i = P(\{\omega_i\})$ we have $P_2(A) = \sum_{i:\omega_i \in A} p_i$ for all $A \in \mathcal{A}$

Mikael Skoglund, Probability and random processes

Some Standard Borel Spaces

- Any finite set
- The rational numbers, and the irrational numbers
- $(\mathbb{R}^n, \mathcal{B}^n)$ (with $\mathcal{B}^n =$ the Borel sets $\subset \mathbb{R}^n$)
- Separable Hilbert spaces, i.e., Hilbert spaces which admit a countable basis; for example the space of square-integrable functions with inner product

$$\langle f,g\rangle = \int fg\,dx$$

and metric $\rho(f,g)=(\langle f-g,f-g\rangle)^{1/2}$

Most abstractions corresponding to real-world phenomena result in standard Borel spaces \Rightarrow one can almost always work with $([0,1], \mathcal{L}, \lambda)$ or $([0,1], \mathcal{B}, \lambda_{|\mathcal{B}})$, plus a finite/countable space