Quantum Information Theory

Spring semester, 2017

Assignment 10

Assigned: Friday, June 2, 2017
Due: Friday, June 11, 2017

Problem 10.1: Describe the procedure for constructing a CSS quantum code.
Problem 10.2: Describe the procedure for constructing a quantum stabilizer code.
Problem 10.3: Show that the 9 qubit Shor code can correct any error affecting only one of the qubits.

Problem 10.4: A valid parity-check matrix for the (classical) [7,4,3] Hamming code is obtained as

$$
H=\left[\begin{array}{lllllll}
0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1
\end{array}\right]
$$

Let \mathcal{C}_{1} be this code, and $\mathcal{C}_{2}=\mathcal{C}_{1}^{\perp}$ the corresponding dual code. Verify that the pair $\left(\mathcal{C}_{1}, \mathcal{C}_{2}\right)$ can be used to construct a valid CSS quantum code; the Steane code. Also specify, explicitly, a basis for this code.

Problem 10.5: [10.32 in NC] Verify that

$$
\begin{aligned}
& g_{1}=\sigma_{0}^{\otimes 3} \otimes \sigma_{1}^{\otimes 4}, \quad g_{2}=\sigma_{0} \otimes \sigma_{1}^{\otimes 2} \otimes \sigma_{0}^{\otimes 2} \otimes \sigma_{1}^{\otimes 2} \\
& g_{2}=\sigma_{1} \otimes \sigma_{0} \otimes \sigma_{1} \otimes \sigma_{0} \otimes \sigma_{1} \otimes \sigma_{0} \otimes \sigma_{1}, \quad g_{4}=\sigma_{0}^{\otimes 3} \sigma_{3}^{\otimes 4} \\
& g_{5}=\sigma_{0} \otimes \sigma_{3}^{\otimes 2} \otimes \sigma_{0}^{\otimes 2} \otimes \sigma_{3}^{\otimes 2}, \quad g_{2}=\sigma_{3} \otimes \sigma_{0} \otimes \sigma_{3} \otimes \sigma_{0} \otimes \sigma_{3} \otimes \sigma_{0} \otimes \sigma_{3}
\end{aligned}
$$

generate the Steane code, as a stabilizer code.
Problem 10.6: [10.49 in NC] Verify that

$$
\begin{array}{ll}
g_{1}=\sigma_{1} \otimes \sigma_{3}^{\otimes 2} \otimes \sigma_{1} \otimes \sigma_{0}, & g_{2}=\sigma_{0} \otimes \sigma_{1} \otimes \sigma_{3}^{\otimes 2} \otimes \sigma_{1} \\
g_{3}=\sigma_{1} \otimes \sigma_{0} \otimes \sigma_{1} \otimes \sigma_{3}^{\otimes 2}, & g_{4}=\sigma_{3} \otimes \sigma_{1} \otimes \sigma_{0} \otimes \sigma_{1} \otimes \sigma_{3}
\end{array}
$$

generate a stabilizer code that can correct an arbitrary single qubit error.
Problem 10.7: [10.2 in NC] Prove the Gilbert-Varshamov bound for CSS quantum codes. That is, prove that there exists a CSS code of length n and dimension k that can correct up to t errors as long as

$$
\frac{k}{n} \geq 1-2 h\left(\frac{2 t}{n}\right)
$$

where $h(x)=-x \log x-(1-x) \log (1-x)$
Problem 10.8: Consider the group S generated by $\left\{g_{\ell}\right\}_{\ell=1}^{L}$ and such that $-I=-\sigma_{0}$ is not in S. Verify that the generators $\left\{g_{\ell}\right\}_{\ell=1}^{L}$ are independent iff the rows of the corresponding check matrix are linearly independent.

