Quantum Information Theory

Spring semester, 2017

Assignment 2

Assigned: Friday, March 24, 2017
Due: Friday, March 31, 2017
M. Skoglund

Problem 2.1: State and explain Postulates $1-3$ of Hilbert space quantum mechanics
Problem 2.2: Explain and discuss the concepts measurement and projective measurement. Explain how outcomes of physical measurements, their probabilities and expected values are obtained

Problem 2.3: Define the concept of qubit and illustrate the corresponding Bloch sphere representation

Problem 2.4: For a qubit, the basis $\{|0\rangle,|1\rangle\}$ is the computational basis, this is the "standard" basis for qubits. Consider a qubit $|\psi\rangle$ in the computational basis, and the Pauli matrices

$$
\sigma_{0}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad \sigma_{x}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], \quad \sigma_{y}=\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right], \quad \sigma_{z}=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

(alternative notation $\sigma_{0} \rightarrow I, \sigma_{x} \rightarrow \sigma_{1} \rightarrow X, \sigma_{y} \rightarrow \sigma_{2} \rightarrow Y, \sigma_{z} \rightarrow \sigma_{3} \rightarrow Z$). When operating on $|\psi\rangle$, interpret the action performed by the Pauli matrices

Problem 2.5: Show that the operators defined by the Pauli matrices are self-adjoint, unitary, and have eigenvalues ± 1. Express their eigenvectors/states in the computational basis

Problem 2.6: For a qubit in the computational basis, define the $| \pm 1\rangle$-basis as

The operator represented by $H=|+\rangle\langle 0|+|-\rangle\langle 1|$ (in the computational basis) is the Hadamard transformation, or Hadamard gate. For $|\psi\rangle$ in the computational basis, express $H|\psi\rangle$ in the
 What do your results say about the operator represented by H ?

Problem 2.7: State, interpret and prove Heisenberg's uncertainty principle for projective measurements

