Quantum Information Theory

Spring semester, 2017

Assignment 8

Assigned: Friday, May 12, 2017
Due: Friday, May 19, 2017
M. Skoglund

Problem 8.1: Define the Holevo information $\chi(\mathcal{N})$ of a channel \mathcal{N}.
Problem 8.2: State and explain the Holevo-Schumacher-Westmoreland coding theorem.
Problem 8.3: Define the coherent information $\mathcal{Q}(\mathcal{N})$ of a channel \mathcal{N}.
Problem 8.4: State and explain the coding theorem for quantum communication (preservation of entanglement) over a quantum channel \mathcal{N}.

Problem 8.5: Let $S\left(\rho_{A} ; \rho_{B}\right)$ denote the mutual information of a state $\rho^{A B} \in \mathcal{A} \otimes \mathcal{B}$, and $S\left(\sigma_{A} ; \sigma_{B}\right)$ the mutual information of another state $\sigma^{A B}$. Assume that \mathcal{A} and \mathcal{B} are both finitedimensional, of dimensions d_{A} and d_{B}, respectively. Prove that if $V(\rho, \sigma)=2^{-1} \operatorname{Tr}|\rho-\sigma| \leq \varepsilon$ then

$$
\left|S\left(\rho_{A} ; \rho_{B}\right)-S\left(\sigma_{A} ; \sigma_{B}\right)\right| \leq 12 \varepsilon \log d_{A}+4 h(2 \varepsilon)
$$

where $h(x)=-x \log x-(1-x) \log (1-x)$.
Problem 8.6: Assume $\left\{e_{m}\right\}$ is a basis for \mathcal{M} and $\left\{f_{m}\right\}$ one for \mathcal{M}^{\prime}, both of size M, and let

$$
\theta=\frac{1}{M} \sum_{m}\left|e_{m}\right\rangle\left\langle e_{m}\right| \otimes\left|f_{m}\right\rangle\left\langle f_{m}\right|
$$

Given $\left\{\rho_{m}^{n}\right\}, \rho_{m}^{n} \in \mathcal{A}^{\otimes n}, m \in\{1, \ldots, M\}$, assume that the state

$$
\frac{1}{M} \sum_{m}\left|e_{m}\right\rangle\left\langle e_{m}\right| \otimes \rho_{m}^{n} \in \mathcal{M} \otimes \mathcal{A}^{\otimes n}
$$

is available at the input of n uses of a noisy channel \mathcal{N}, to form the state

$$
\phi=\frac{1}{M} \sum_{m}\left|e_{m}\right\rangle\left\langle e_{m}\right| \otimes \mathcal{N}^{\otimes n}\left(\rho_{m}^{n}\right)
$$

after transmission. Let σ be any state that can be produced by operating on ϕ at the output of the n channel uses. If for some R and any $\varepsilon>0$ there is an N such that for all $n>N$, $V(\theta, \sigma)<\varepsilon$ and $n^{-1} \log M>R-\varepsilon$, then R is achievable for "common randomness generation" in the sense of sharing the state θ. It can be proved that any R achievable for classical communication over n uses of \mathcal{N} is also achievable for common randomness generation. Use this fact, and the result in Problem 8.5, to prove a converse for the Holevo-SchumacherWestmoreland theorem, i.e. that no rates above

$$
C=\lim _{k \rightarrow \infty} \frac{1}{k} \chi\left(\mathcal{N}^{\otimes k}\right)
$$

are achievable for classical communication.
Problem 8.7: Determine the capacity for quantum (i.e. not classical) communication over the erasure channel

$$
\rho \rightarrow(1-\varepsilon) \rho+\varepsilon|e\rangle\langle e|
$$

where $|e\rangle$ is orthogonal to all eigenvectors of ρ (assuming that ρ has a finite number of eigenvectors).

