Quantum Information Theory Spring semester, 2017

Assignment 8 Assigned: Friday, May 12, 2017 Due: Friday, May 19, 2017

M. Skoglund

Problem 8.1: Define the Holevo information $\chi(\mathcal{N})$ of a channel \mathcal{N} .

Problem 8.2: State and explain the Holevo–Schumacher–Westmoreland coding theorem.

Problem 8.3: Define the coherent information $\mathcal{Q}(\mathcal{N})$ of a channel \mathcal{N} .

Problem 8.4: State and explain the coding theorem for quantum communication (preservation of entanglement) over a quantum channel \mathcal{N} .

Problem 8.5: Let $S(\rho_A; \rho_B)$ denote the mutual information of a state $\rho^{AB} \in \mathcal{A} \otimes \mathcal{B}$, and $S(\sigma_A; \sigma_B)$ the mutual information of another state σ^{AB} . Assume that \mathcal{A} and \mathcal{B} are both finitedimensional, of dimensions d_A and d_B , respectively. Prove that if $V(\rho, \sigma) = 2^{-1} \text{Tr} |\rho - \sigma| \leq \varepsilon$ then

$$|S(\rho_A;\rho_B) - S(\sigma_A;\sigma_B)| \le 12\varepsilon \log d_A + 4h(2\varepsilon)$$

where $h(x) = -x \log x - (1 - x) \log(1 - x)$.

Problem 8.6: Assume $\{e_m\}$ is a basis for \mathcal{M} and $\{f_m\}$ one for \mathcal{M}' , both of size \mathcal{M} , and let

$$\theta = \frac{1}{M} \sum_{m} |e_m\rangle \langle e_m| \otimes |f_m\rangle \langle f_m|$$

Given $\{\rho_m^n\}, \rho_m^n \in \mathcal{A}^{\otimes n}, m \in \{1, \dots, M\}$, assume that the state

$$\frac{1}{M}\sum_{m}|e_{m}\rangle\langle e_{m}|\otimes\rho_{m}^{n}\in\mathcal{M}\otimes\mathcal{A}^{\otimes n}$$

is available at the input of n uses of a noisy channel \mathcal{N} , to form the state

$$\phi = \frac{1}{M} \sum_{m} |e_m\rangle \langle e_m| \otimes \mathcal{N}^{\otimes n}(\rho_m^n)$$

after transmission. Let σ be any state that can be produced by operating on ϕ at the output of the *n* channel uses. If for some *R* and any $\varepsilon > 0$ there is an *N* such that for all n > N, $V(\theta, \sigma) < \varepsilon$ and $n^{-1} \log M > R - \varepsilon$, then *R* is achievable for "common randomness generation" in the sense of sharing the state θ . It can be proved that any *R* achievable for classical communication over *n* uses of \mathcal{N} is also achievable for common randomness generation. Use this fact, and the result in Problem 8.5, to prove a converse for the Holevo–Schumacher– Westmoreland theorem, i.e. that no rates above

$$C = \lim_{k \to \infty} \frac{1}{k} \chi(\mathcal{N}^{\otimes k})$$

are achievable for classical communication.

Problem 8.7: Determine the capacity for quantum (i.e. not classical) communication over the erasure channel

$$\rho \to (1 - \varepsilon)\rho + \varepsilon |e\rangle \langle e|$$

where $|e\rangle$ is orthogonal to all eigenvectors of ρ (assuming that ρ has a finite number of eigenvectors).