
Quantum
Lecture 1

• Metric and linear spaces

• Hilbert spaces
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The mathematical description of a quantum mechanical system
relies fundamentally on Hilbert space theory

The state of a quantum system is a point in a Hilbert space H
• A Hilbert space is a linear vector space with an inner product,

which is complete relative to the induced norm

Usually it is assumed that H is separable, so that it has a
countable basis

Performing measurements of real-valued physical entities is
modeled via linear operators on H, with the eigenvalues of the
operator as possible outcomes

• To make physical sense, these operators must be self-adjoint
and compact

⇒ we need to learn more about concepts like: linear space, inner
product, norm, complete, separable, basis, eigenvalue, self-adjoint
and compact. . .
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Metric, Linear and Normed Spaces

For a given set Ω, a function ρ : Ω× Ω→ R is a metric if for all
x, y, z ∈ Ω

ρ(x, y) ≥ 0 with = only if x = y

ρ(x, y) = ρ(y, x)

ρ(x, z) ≤ ρ(x, y) + ρ(y, z)

The pair (Ω, ρ) is a metric space
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For a sequence {xn} in a metric space Ω, if for each ε > 0 there is
an N and an x ∈ Ω such that

ρ(xn, x) < ε for all n > N , then {xn} converges to the point x

ρ(xm, xn) < ε for all m,n > N , then {xn} is a Cauchy sequence

A metric space is complete if all Cauchy sequences converge to
points in the space
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A set O in Ω is open if for any x ∈ O there is an r > 0 such that
Br(x) ⊂ O, where Br(x) = {y ∈ Ω : ρ(x, y) < r}
Given a set E ⊂ Ω, a point x ∈ Ω is a limit point of E if
O ∩ E 6= ∅ for all open O with x ∈ O
The set of all limit points of E = the closure of E, notation E

A set E is closed if Ec is open

A set E is dense in Ω if E = Ω

• c.f. the rational numbers Q are dense in R
(Ω, ρ) is separable if there is a countable set E ⊂ Ω such that
E = Ω

• c.f. R is separable since Q is countable and R = Q
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Given a set E, a collection S of sets is a covering of E if
E ⊂ ⋃

S∈S S

Given E, if S is a covering of E and S ′ ⊂ S is also a covering,
then S ′ is a subcovering

A covering S is open if it contains only open sets

Given (Ω, T ), a subset E ⊂ Ω is compact if every open covering of
E has a finite subcovering

• E ⊂ Rn is compact ⇐⇒ E is closed and bounded

(Ω, ρ) is compact if Ω is compact
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A linear space is a set Ω, a field F (= R or C) and two operations
’+’ and ’·’ such that for all x, y, z ∈ Ω and a ∈ F
x+ y ∈ Ω

a · x ∈ Ω

x+ y = y + x

x+ (y + z) = (x+ y) + z

Furthermore,

there is an element 0 ∈ Ω such that x+ 0 = x

there is an element −x ∈ Ω such that x+ (−x) = 0

The field F is the set of scalars
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A linear space is a normed space if F = R or C and there is a
function ‖ · ‖ from Ω to R such that for all x, y ∈ Ω and a ∈ F
‖x‖ ≥ 0 with equality only if x = 0

‖a · x‖ = |a|‖x‖
‖x+ y‖ ≤ ‖x‖+ ‖y‖

The metric space induced by (Ω, ‖ · ‖) is the space (Ω, ρ) with
ρ(x, y) = ‖x− y‖
A normed space with metric defined by the norm is a Banach
space if it is complete
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Let Ω and Λ be linear with the same F . A function L : Ω→ Λ is a
linear operator (mapping, transformation) if for x, y ∈ Ω and a ∈ F
L(x+ y) = L(x) + L(y)

L(ax) = aL(x)

If sup{‖L(x)‖ : ‖x‖ ≤ 1} <∞ then L is bounded

In case Λ = F we call L a (linear) functional
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The set of all bounded L is denoted B(Ω,Λ). If we define

(L1 + L2)(x) = L1(x) + L2(x)

and (aL)(x) = aL(x) for L,L1, L2 ∈ B(Ω,Λ) and any a ∈ F ,
then B(Ω,Λ) is a linear space, and a normed space with norm

‖L‖ = sup{‖L(x)‖ : ‖x‖ ≤ 1} <∞

When Λ = F we say B(Ω,Λ) = Ω∗ with norm ‖ · ‖∗

For a normed space Ω, the space (Ω∗, ‖ · ‖∗) of bounded linear
functionals on Ω is called the dual of Ω
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Let Ω be a linear space with scalar field R or C. An inner product
on Ω is a mapping g : Ω× Ω→ F such that for all x, y, z ∈ Ω and
scalars a and b, and with 〈x, y〉 = g(x, y)

〈ax+ by, z〉 = a〈x, z〉+ b〈y, z〉
〈x, y〉 = (〈y, x〉)∗ (complex conjugate)

〈x, x〉 ≥ 0 with equality only if x = 0

The pair (Ω, g) is an inner product space

Given (Ω, g), with 〈x, y〉 = g(x, y), ‖x‖ =
√
〈x, x〉 is a norm

For two inner product spaces (Ω, g) and (Γ, u), a linear operator
L : Ω→ Γ is unitary if it is bijective (1-to-1 and onto) and
u(L(x), L(y)) = g(x, y) for all x, y ∈ Ω

Mikael Skoglund, Quantum Info 11/19

Hilbert Space

A complete normed inner product space with norm induced by the
inner product is called a Hilbert space

x and y (in a Hilbert space) are orthogonal if 〈x, y〉 = 0

For S ⊂ Ω, the orthogonal complement is

S⊥ = {y ∈ Ω : 〈x, y〉 = 0 for all x ∈ S}

Let (Ω, g) be an inner product space, then there exists a Hilbert
space (H, h), the completion of (Ω, g), fulfilling:

There is a linear 1-to-1 mapping T : Ω→ H such that
g(x, y) = f(T (x), T (y))

{T (x) : x ∈ Ω} is dense in H
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S ⊂ Ω is an orthogonal set if all elements are pairwise orthogonal;
such a set is orthonormal if in addition ‖x‖ = 1 for all x ∈ S
If S is orthonormal and is not contained in any strictly larger
orthonormal set, then S is a basis

If Ω 6= {0} is a Hilbert space, then it has a basis S

In general S can be uncountable; a Hilbert space has a countable
basis iff it is separable

• assume that whenever we have a Hilbert space it is separable

The span, span(S), of an arbitrary subset S is the set of all finite
linear combinations of the elements in S
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For a (separable) Hilbert space Ω and an orthonormal subset
E ⊂ Ω, the following are equivalent

E is a basis

span(E) = Ω

〈x, e〉 = 0 for each e ∈ E ⇒ x = 0

for each x ∈ Ω

x =
∑

e∈E
〈x, e〉e and ‖x‖2 =

∑

e∈E
|〈x, e〉|2

For Ω and its dual Ω∗, ` ∈ Ω∗ iff there is a y ∈ Ω such that
`(x) = 〈y, x〉 for each x ∈ Ω. Also, ‖`‖∗ = ‖y‖
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Compact Self-Adjoint Operators

Let Ω 6= {0} be a Hilbert space and T : Ω→ Ω a bounded linear
operator. For fixed y the mapping x→ 〈T (x), y〉 is a bounded
linear functional

There is a unique t ∈ Ω such that 〈T (x), y〉 = 〈x, t〉
The element t is called the adjoint of T , notation T ∗(y)

If T ∗(x) = T (x) for all x ∈ Ω then T is self-adjoint

A linear operator T is compact if {T (x) : ‖x‖ ≤ 1} is compact

A number λ is an eigenvalue of T if there is a x 6= 0 such that
T (x) = λx, where x is the corresponding eigenvector
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If T is self-adjoint, then

〈T (x), x〉 is real-valued for all x ∈ Ω

all eigenvalues are real

if λ1 6= λ2 correspond to x1 and x2, then 〈x1, x2〉 = 0

if λ is an eigenvalue then |λ| ≤ ‖T‖
if T is also compact then for λ 6= 0 the set {x : T (x) = λx} is
finite-dimensional (has a finite basis)

Spectral Theorem. Let T be a compact self-adjoint operator on Ω.
Then there is a countable orthonormal set {un} such that for any
x ∈ Ω

T (x) =
∑

n

λn〈x, un〉un

where {λn} are all non-zero (not necessarily distinct) eigenvalues
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Note that we can write

T (x) =
∑

i

λiPi(x)

over distinct eigenvalues λi, where Pi(x) projects x to
{x : T (x) = λix}, the finite-dimensional subspace spanned by the
eigenvectors of λi

If Ω 6= {0} is a separable Hilbert space and T a compact
self-adjoint operator, then the eigenvectors of T form a countable
basis for Ω
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For a bounded linear operator T on a Hilbert space Ω, the trace of
T is defined as

TrT =
∑

i

〈ei, T (ei)〉

where {ei} is any orthonormal basis. The number TrT does not
depend on which basis we choose

An operator T is positive if it is self-adjoint and 〈x, T (x)〉 > 0 for
all x ⇒ TrT > 0

For any positive operator T , let
√
T be the operator that solves√

T (
√
T (x)) = T (x)

If T : Ω1 → Ω2 is bounded then T ∗(T (x)) : Ω1 → Ω1 is positive
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Let |T |(x) =
√
T ∗(T (x)) be the absolute value of T

A bounded operator T is trace class if Tr |T | <∞
trace class ⇒ compact

The exponential of a bounded linear operator

expT = I + T +
T 2

2
+
T 3

3!
+ · · ·

(where I is the identity, I(x) = x, and T 2(x) = T (T (x)), etc.)

The bounded linear operator T has a logarithm L, if T = expL
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