Quantum

Lecture 1

- Metric and linear spaces
- Hilbert spaces

The mathematical description of a quantum mechanical system relies fundamentally on Hilbert space theory

The state of a quantum system is a point in a Hilbert space \mathcal{H}

- A Hilbert space is a linear vector space with an inner product, which is complete relative to the induced norm
Usually it is assumed that \mathcal{H} is separable, so that it has a countable basis

Performing measurements of real-valued physical entities is modeled via linear operators on \mathcal{H}, with the eigenvalues of the operator as possible outcomes

- To make physical sense, these operators must be self-adjoint and compact
\Rightarrow we need to learn more about concepts like: linear space, inner product, norm, complete, separable, basis, eigenvalue, self-adjoint and compact...

Metric, Linear and Normed Spaces

For a given set Ω, a function $\rho: \Omega \times \Omega \rightarrow \mathbb{R}$ is a metric if for all $x, y, z \in \Omega$
$\rho(x, y) \geq 0$ with $=$ only if $x=y$
$\rho(x, y)=\rho(y, x)$
$\rho(x, z) \leq \rho(x, y)+\rho(y, z)$
The pair (Ω, ρ) is a metric space

For a sequence $\left\{x_{n}\right\}$ in a metric space Ω, if for each $\varepsilon>0$ there is an N and an $x \in \Omega$ such that
$\rho\left(x_{n}, x\right)<\varepsilon$ for all $n>N$, then $\left\{x_{n}\right\}$ converges to the point x $\rho\left(x_{m}, x_{n}\right)<\varepsilon$ for all $m, n>N$, then $\left\{x_{n}\right\}$ is a Cauchy sequence A metric space is complete if all Cauchy sequences converge to points in the space

A set O in Ω is open if for any $x \in O$ there is an $r>0$ such that $B_{r}(x) \subset O$, where $B_{r}(x)=\{y \in \Omega: \rho(x, y)<r\}$
Given a set $E \subset \Omega$, a point $x \in \Omega$ is a limit point of E if $O \cap E \neq \emptyset$ for all open O with $x \in O$
The set of all limit points of $E=$ the closure of E, notation \bar{E}
A set E is closed if E^{c} is open
A set E is dense in Ω if $\bar{E}=\Omega$

- c.f. the rational numbers \mathbb{Q} are dense in \mathbb{R}
(Ω, ρ) is separable if there is a countable set $E \subset \Omega$ such that $\bar{E}=\Omega$
- c.f. \mathbb{R} is separable since \mathbb{Q} is countable and $\mathbb{R}=\overline{\mathbb{Q}}$

Given a set E, a collection \mathcal{S} of sets is a covering of E if $E \subset \bigcup_{S \in \mathcal{S}} S$
Given E, if \mathcal{S} is a covering of E and $\mathcal{S}^{\prime} \subset \mathcal{S}$ is also a covering, then \mathcal{S}^{\prime} is a subcovering
A covering \mathcal{S} is open if it contains only open sets
Given (Ω, \mathcal{T}), a subset $E \subset \Omega$ is compact if every open covering of E has a finite subcovering

- $E \subset \mathbb{R}^{n}$ is compact $\Longleftrightarrow E$ is closed and bounded (Ω, ρ) is compact if Ω is compact

A linear space is a set Ω, a field $F(=\mathbb{R}$ or $\mathbb{C})$ and two operations ' + ' and '.' such that for all $x, y, z \in \Omega$ and $a \in F$
$x+y \in \Omega$
$a \cdot x \in \Omega$
$x+y=y+x$
$x+(y+z)=(x+y)+z$
Furthermore,
there is an element $0 \in \Omega$ such that $x+0=x$
there is an element $-x \in \Omega$ such that $x+(-x)=0$
The field F is the set of scalars

A linear space is a normed space if $F=\mathbb{R}$ or \mathbb{C} and there is a function $\|\cdot\|$ from Ω to \mathbb{R} such that for all $x, y \in \Omega$ and $a \in F$
$\|x\| \geq 0$ with equality only if $x=0$

$$
\begin{aligned}
& \|a \cdot x\|=|a|\|x\| \\
& \|x+y\| \leq\|x\|+\|y\|
\end{aligned}
$$

The metric space induced by $(\Omega,\|\cdot\|)$ is the space (Ω, ρ) with $\rho(x, y)=\|x-y\|$
A normed space with metric defined by the norm is a Banach space if it is complete

Let Ω and Λ be linear with the same F. A function $L: \Omega \rightarrow \Lambda$ is a linear operator (mapping, transformation) if for $x, y \in \Omega$ and $a \in F$

$$
\begin{aligned}
& L(x+y)=L(x)+L(y) \\
& L(a x)=a L(x)
\end{aligned}
$$

If $\sup \{\|L(x)\|:\|x\| \leq 1\}<\infty$ then L is bounded
In case $\Lambda=F$ we call L a (linear) functional

The set of all bounded L is denoted $B(\Omega, \Lambda)$. If we define

$$
\left(L_{1}+L_{2}\right)(x)=L_{1}(x)+L_{2}(x)
$$

and $(a L)(x)=a L(x)$ for $L, L_{1}, L_{2} \in B(\Omega, \Lambda)$ and any $a \in F$, then $B(\Omega, \Lambda)$ is a linear space, and a normed space with norm

$$
\|L\|=\sup \{\|L(x)\|:\|x\| \leq 1\}<\infty
$$

When $\Lambda=F$ we say $B(\Omega, \Lambda)=\Omega^{*}$ with norm $\|\cdot\|_{*}$
For a normed space Ω, the space $\left(\Omega^{*},\|\cdot\|_{*}\right)$ of bounded linear functionals on Ω is called the dual of Ω

Let Ω be a linear space with scalar field \mathbb{R} or \mathbb{C}. An inner product on Ω is a mapping $g: \Omega \times \Omega \rightarrow F$ such that for all $x, y, z \in \Omega$ and scalars a and b, and with $\langle x, y\rangle=g(x, y)$

$$
\langle a x+b y, z\rangle=a\langle x, z\rangle+b\langle y, z\rangle
$$

$\langle x, y\rangle=(\langle y, x\rangle)^{*}$ (complex conjugate)
$\langle x, x\rangle \geq 0$ with equality only if $x=0$
The pair (Ω, g) is an inner product space
Given (Ω, g), with $\langle x, y\rangle=g(x, y),\|x\|=\sqrt{\langle x, x\rangle}$ is a norm
For two inner product spaces (Ω, g) and (Γ, u), a linear operator $L: \Omega \rightarrow \Gamma$ is unitary if it is bijective (1-to-1 and onto) and $u(L(x), L(y))=g(x, y)$ for all $x, y \in \Omega$

Hilbert Space

A complete normed inner product space with norm induced by the inner product is called a Hilbert space
x and y (in a Hilbert space) are orthogonal if $\langle x, y\rangle=0$
For $S \subset \Omega$, the orthogonal complement is

$$
S^{\perp}=\{y \in \Omega:\langle x, y\rangle=0 \text { for all } x \in S\}
$$

Let (Ω, g) be an inner product space, then there exists a Hilbert space (\mathcal{H}, h), the completion of (Ω, g), fulfilling:
There is a linear 1-to-1 mapping $T: \Omega \rightarrow \mathcal{H}$ such that $g(x, y)=f(T(x), T(y))$
$\{T(x): x \in \Omega\}$ is dense in \mathcal{H}
$S \subset \Omega$ is an orthogonal set if all elements are pairwise orthogonal; such a set is orthonormal if in addition $\|x\|=1$ for all $x \in S$ If S is orthonormal and is not contained in any strictly larger orthonormal set, then S is a basis

If $\Omega \neq\{0\}$ is a Hilbert space, then it has a basis S
In general S can be uncountable; a Hilbert space has a countable basis iff it is separable

- assume that whenever we have a Hilbert space it is separable The span, $\operatorname{span}(S)$, of an arbitrary subset S is the set of all finite linear combinations of the elements in S

For a (separable) Hilbert space Ω and an orthonormal subset $E \subset \Omega$, the following are equivalent
E is a basis
$\overline{\operatorname{span}(E)}=\Omega$
$\langle x, e\rangle=0$ for each $e \in E \Rightarrow x=0$
for each $x \in \Omega$

$$
x=\sum_{e \in E}\langle x, e\rangle e \quad \text { and } \quad\|x\|^{2}=\sum_{e \in E}|\langle x, e\rangle|^{2}
$$

For Ω and its dual $\Omega^{*}, \ell \in \Omega^{*}$ iff there is a $y \in \Omega$ such that $\ell(x)=\langle y, x\rangle$ for each $x \in \Omega$. Also, $\|\ell\|_{*}=\|y\|$

Compact Self-Adjoint Operators

Let $\Omega \neq\{0\}$ be a Hilbert space and $T: \Omega \rightarrow \Omega$ a bounded linear operator. For fixed y the mapping $x \rightarrow\langle T(x), y\rangle$ is a bounded linear functional

There is a unique $t \in \Omega$ such that $\langle T(x), y\rangle=\langle x, t\rangle$
The element t is called the adjoint of T, notation $T^{*}(y)$ If $T^{*}(x)=T(x)$ for all $x \in \Omega$ then T is self-adjoint

A linear operator T is compact if $\overline{\{T(x):\|x\| \leq 1\}}$ is compact
A number λ is an eigenvalue of T if there is a $x \neq 0$ such that $T(x)=\lambda x$, where x is the corresponding eigenvector

If T is self-adjoint, then
$\langle T(x), x\rangle$ is real-valued for all $x \in \Omega$
all eigenvalues are real
if $\lambda_{1} \neq \lambda_{2}$ correspond to x_{1} and x_{2}, then $\left\langle x_{1}, x_{2}\right\rangle=0$
if λ is an eigenvalue then $|\lambda| \leq\|T\|$
if T is also compact then for $\lambda \neq 0$ the set $\{x: T(x)=\lambda x\}$ is finite-dimensional (has a finite basis)

Spectral Theorem. Let T be a compact self-adjoint operator on Ω. Then there is a countable orthonormal set $\left\{u_{n}\right\}$ such that for any $x \in \Omega$

$$
T(x)=\sum_{n} \lambda_{n}\left\langle x, u_{n}\right\rangle u_{n}
$$

where $\left\{\lambda_{n}\right\}$ are all non-zero (not necessarily distinct) eigenvalues

Note that we can write

$$
T(x)=\sum_{i} \lambda_{i} P_{i}(x)
$$

over distinct eigenvalues λ_{i}, where $P_{i}(x)$ projects x to $\left\{x: T(x)=\lambda_{i} x\right\}$, the finite-dimensional subspace spanned by the eigenvectors of λ_{i}

If $\Omega \neq\{0\}$ is a separable Hilbert space and T a compact self-adjoint operator, then the eigenvectors of T form a countable basis for Ω

For a bounded linear operator T on a Hilbert space Ω, the trace of T is defined as

$$
\operatorname{Tr} T=\sum_{i}\left\langle e_{i}, T\left(e_{i}\right)\right\rangle
$$

where $\left\{e_{i}\right\}$ is any orthonormal basis. The number $\operatorname{Tr} T$ does not depend on which basis we choose

An operator T is positive if it is self-adjoint and $\langle x, T(x)\rangle>0$ for all $x \Rightarrow \operatorname{Tr} T>0$
For any positive operator T, let \sqrt{T} be the operator that solves $\sqrt{T}(\sqrt{T}(x))=T(x)$
If $T: \Omega_{1} \rightarrow \Omega_{2}$ is bounded then $T^{*}(T(x)): \Omega_{1} \rightarrow \Omega_{1}$ is positive

Let $|T|(x)=\sqrt{T^{*}(T(x))}$ be the absolute value of T
A bounded operator T is trace class if $\operatorname{Tr}|T|<\infty$

$$
\text { trace class } \Rightarrow \text { compact }
$$

The exponential of a bounded linear operator

$$
\exp T=I+T+\frac{T^{2}}{2}+\frac{T^{3}}{3!}+\cdots
$$

(where I is the identity, $I(x)=x$, and $T^{2}(x)=T(T(x)$), etc.)
The bounded linear operator T has a logarithm L, if $T=\exp L$

