Quantum

Lecture 10

- Shor
- Calderbank-Shor-Steane
- Stabilizer

Errors on qubits

A qubit $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle \in \mathcal{H}, \rho=|\psi\rangle\langle\psi|$
$|\psi\rangle \rightarrow E_{0}|\psi\rangle$ with probability $1-\varepsilon$, and $|\psi\rangle \rightarrow E_{1}|\psi\rangle$ with probability ε

Bit flips:

$$
E_{0}=\sqrt{1-\varepsilon}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad E_{1}=\sqrt{\varepsilon}\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

Phase flips:

$$
E_{0}=\sqrt{1-\varepsilon}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad E_{1}=\sqrt{\varepsilon}\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

Depolarizing channel:

$$
\mathcal{E}(\rho)=\frac{\varepsilon}{2} I+(1-\varepsilon) \rho
$$

Discretization

Any \mathcal{E} operating on qubits can be written in terms of operation elements $\left\{E_{i}\right\}$ that are linear combinations of the Pauli matrices

$$
\sigma_{0}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad \sigma_{1}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], \quad \sigma_{2}=\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right], \quad \sigma_{3}=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

In particular, for the depolarizing channel we can use

$$
\frac{I}{2}=\frac{1}{4}\left(\sigma_{0} \rho \sigma_{0}+\sigma_{1} \rho \sigma_{1}+\sigma_{2} \rho \sigma_{2}+\sigma_{3} \rho \sigma_{3}\right)
$$

$\left\{E_{i}\right\}$ correctable $\Rightarrow F_{j}=\sum_{i} c_{i j} E_{i}$ correctable \Rightarrow codes designed for the depolarizing channel will work for any channel

The Shor code ($n=9$)
Let

$$
H=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]
$$

be the Hadamard operator/gate on qubits
logical $0 \rightarrow|0\rangle$ and $1 \rightarrow|1\rangle$ in \mathcal{H}, extend to \mathcal{H}^{9} as follows:
map $|0\rangle$ to $|+\rangle=H|0\rangle$, and $|1\rangle$ to $|-\rangle=H|1\rangle$
extend $|+\rangle \rightarrow|+++\rangle$ and $|-\rangle$ to $|---\rangle$
extend each $|+\rangle$ to $(|000\rangle+|111\rangle) / \sqrt{2}$

$$
\text { and each }|-\rangle \text { to }(|000\rangle-|111\rangle) / \sqrt{2}
$$

resulting code
$0 \rightarrow\left|c_{0}\right\rangle=\frac{1}{2 \sqrt{2}}(|000\rangle+|111\rangle)^{\otimes 3}, \quad 1 \rightarrow\left|c_{1}\right\rangle=\frac{1}{2 \sqrt{2}}(|000\rangle-|111\rangle)^{\otimes 3}$

Error correction

The Shor code can correct any error on a single qubit, i.e. the error-correction conditions $P_{\mathcal{C}} E_{i}^{*} E_{j} P_{\mathcal{C}}=\gamma_{i j} P_{\mathcal{C}}$ are fulfilled for any E_{i} on \mathcal{H}^{9} affecting only one dimension

To illustrate, assume $E^{\prime}=E \otimes I^{\otimes 8}$ affects the first qubit Since we can write $E=e_{0} I+e_{1} \sigma_{1}+e_{2} \sigma_{2}+e_{3} \sigma_{3}$, it suffices to check that $P_{\mathcal{C}} \sigma_{i}^{*} \sigma_{j} P_{\mathcal{C}}=\gamma_{i j} P_{\mathcal{C}}$, with

$$
P_{\mathcal{C}}=\left|c_{0}\right\rangle\left\langle c_{0}\right|+\left|c_{1}\right\rangle\left\langle c_{1}\right|
$$

Code subspaces (cosets)
Assume a qubit space \mathcal{H}, with computational basis $\{|0\rangle,|1\rangle\}$, and let $\mathcal{H}^{n}=\mathcal{H}^{\otimes n}$

For $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in\{0,1\}^{n}, \mathcal{H}^{n}$ has a basis

$$
\left\{|\mathbf{x}\rangle: \mathbf{x} \in\{0,1\}^{n}\right\}
$$

where $|\mathbf{x}\rangle=\left|x_{1} \cdots x_{n}\right\rangle=\left|x_{1}\right\rangle\left|x_{2}\right\rangle \cdots\left|x_{n}\right\rangle$
For $\mathcal{C} \subset\{0,1\}^{n}$ of size $M=|\mathcal{C}|$ and $|\mathbf{x}\rangle$ a basis vector in \mathcal{H}^{n}, define

$$
|\mathbf{x}+\mathcal{C}\rangle=\frac{1}{\sqrt{M}} \sum_{\mathbf{y} \in \mathcal{C}}|\mathbf{x}+\mathbf{y}\rangle
$$

where $|\mathbf{x}+\mathbf{y}\rangle$ denotes the basis vector in \mathcal{H}^{n} corresponding to the binary vector $\mathbf{x}+\mathbf{y}$

Calderbank-Shor-Steane codes

Assume \mathcal{C}_{1} and \mathcal{C}_{2} are $\left[n, k_{i}, d_{i}\right]$ codes, $i \in\{1,2\}$, over $\operatorname{GF}(2)$, such that $\mathcal{C}_{2} \subset \mathcal{C}_{1}\left(k_{2} \leq k_{1}\right)$ and $d_{1} \geq 2 t+1$, and such that \mathcal{C}_{2}^{\perp} is an $\left[n, n-k_{2}, \delta\right]$ code with $\delta \geq 2 t+1$
The (binary/qubit) CSS quantum code defined by $\left(\mathcal{C}_{1}, \mathcal{C}_{2}\right)$ is the subspace of \mathcal{H} spanned by the basis vectors

$$
\left|\mathbf{x}+\mathcal{C}_{2}\right\rangle, \quad \mathbf{x} \in \mathcal{C}_{1}
$$

$$
\mathbf{x} \text { and } \mathbf{x}^{\prime} \text { in same coset } \mathcal{C}_{2}(\mathbf{x}) \Rightarrow\left|\mathbf{x}+\mathcal{C}_{2}\right\rangle=\left|\mathbf{x}^{\prime}+\mathcal{C}_{2}\right\rangle
$$

$$
\mathcal{C}_{2}(\mathbf{x}) \neq \mathcal{C}_{2}\left(\mathbf{x}^{\prime}\right) \Rightarrow\left|\mathbf{x}+\mathcal{C}_{2}\right\rangle \perp\left|\mathbf{x}^{\prime}+\mathcal{C}_{2}\right\rangle
$$

\Rightarrow dimension of the code is $\left|\mathcal{C}_{1}\right| /\left|\mathcal{C}_{2}\right|=2^{k_{1}-k_{2}}$
Can correct any error pattern on t or fewer qubits
That is, $P_{\mathcal{C}} E_{i}^{*} E_{j} P_{\mathcal{C}}=\gamma_{i j} P_{\mathcal{C}}$ is fulfilled for any $\left\{E_{i}\right\}$ affecting at most t dimensions

A group is a set G with an associated operation • ('product') subject to

- $x \cdot(y \cdot z)=(x \cdot y) \cdot z$ for all $x, y, x \in G$
- There exists an element $1 \in G$ (the neutral or unity), such that $1 \cdot x=x \cdot 1=x$ for all $x \in G$
- For any $x \in G$ there exists an element $x^{-1} \in G$, such that $x \cdot x^{-1}=x^{-1} \cdot x=1$

Two elements x and y commute if $x \cdot y=y \cdot x$. If any two elements in a group commute, then the group is commutative or Abelian

The group is finite if the set G is finite
F is a subgroup of G if F is a group and $F \subset G$

The elements in a set $\left\{x_{i}\right\}, x_{i} \in G$, for a finite group G are generators for G if any $y \in G$ can be written as a product of elements from $\left\{x_{i}\right\}$. The set $\left\{x_{i}\right\}$ generates the group G A finite group G is cyclic of order r if the minimal set of generators has only one member $\{x\}$, so that $G=\left\{1, x, x^{2}, \ldots, x^{r-1}\right\}$

The generators in a set $\left\{x_{i}\right\}$ that generates G are independent if when removing any one element the set no longer generates G

Stabilizer Codes

For qubits in the computational basis $\{|0\rangle,|1\rangle\}$, let

$$
G=\left\{ \pm \sigma_{0}, \pm i \sigma_{0}, \pm \sigma_{1}, \pm i \sigma_{1}, \pm \sigma_{2}, \pm i \sigma_{2}, \pm \sigma_{3}, \pm i \sigma_{3}\right\}
$$

where $\left\{\sigma_{0}, \sigma_{1}, \sigma_{2}, \sigma_{3}\right\}$ are the Pauli matrices
Then, G is a group under matrix multiplication
Let G_{n} be the set of all (different results of) n-fold tensor/Kronecker products of the elements in G, then G_{n} is also a group (under matrix multiplication)

For a subgroup S of G_{n}, let V_{S} be the subset of $\left\{|\mathbf{x}\rangle: \mathbf{x} \in\{0,1\}^{n}\right\}$ such that for $|\mathbf{y}\rangle \in V_{S}, T|\mathbf{y}\rangle=|\mathbf{y}\rangle$ for any $T \in S$

Then V_{S} is a vector space, the space stabilized by S
Let S be the group generated by independent generators $\left\{g_{1}, \ldots, g_{n-k}\right\}$ where the g_{i} 's are pairwise commuting elements in G_{n}, and such that $-I$ is not in S. Then V_{S} is a 2^{k}-dimensional vector space,
the resulting space V_{S} is an $[n, k]$ stabilizer code, denoted $\mathcal{C}(S)$
Let $P_{\mathcal{C}}$ be the projector on $\mathcal{C}(S)$, and note that we can write

$$
P_{\mathcal{C}}=2^{k-n} \prod_{\ell=1}^{n-k}\left(I+g_{\ell}\right)
$$

For any $f \in G_{n}$ and $g \in G_{n}, f g= \pm g f$
For a stabilizer code $\mathcal{C}(S)$, the normalizer of the group S is the set

$$
N(S)=\left\{E \in G_{n}: E g E^{*} \in S \text { for all } g \in S\right\}
$$

Also let $Z(S)=\left\{E \in G_{n}: E g=g E\right.$ for all $\left.g \in S\right\}$
In our setup, $N(S)=Z(S)$

Error correction

The error-correction conditions $P_{\mathcal{C}} E_{i}^{*} E_{j} P_{\mathcal{C}}=\gamma_{i j} P_{\mathcal{C}}$ are fulfilled for all $\left\{E_{i}\right\}$ such that

$$
E_{i}^{*} E_{j} \notin N(S) \backslash S
$$

Proof
Consider a set of errors $\left\{E_{i}\right\}$ such that $E_{i}^{*} E_{j} \notin N(S) \backslash S$
For fixed k and ℓ, either $E_{k}^{*} E_{\ell} \in S$ or $E_{k}^{*} E_{\ell} \in G_{n} \backslash N(S)$
If $E_{k}^{*} E_{\ell} \in S$ then $P_{\mathcal{C}} E_{k}^{*} E_{\ell} P_{\mathcal{C}}=P_{\mathcal{C}}$
For $E_{k}^{*} E_{\ell} \in G_{n} \backslash N(S)$, note that $E_{k}^{*} E_{\ell} g=-g E_{k}^{*} E_{\ell}$ for some $g \in S$. Without loss of generality, we can assume $g=g_{1}$. Thus

$$
E_{k}^{*} E_{\ell} P_{\mathcal{C}}=2^{k-n}\left(I-g_{1}\right) E_{k}^{*} E_{\ell} \prod_{\ell=2}^{n-k}\left(I+g_{\ell}\right)
$$

and hence $P_{\mathcal{C}} E_{k}^{*} E_{\ell} P_{\mathcal{C}}=0$ since $P_{\mathcal{C}}\left(I-g_{1}\right)=0$

The Shor code as a stabilizer code: The following generators will result in $V_{S}=$ the Shor code,

$$
\begin{aligned}
& g_{1}=\sigma_{3} \otimes \sigma_{3} \otimes \sigma_{0}^{\otimes 7} \\
& g_{2}=\sigma_{0} \otimes \sigma_{3} \otimes \sigma_{3} \otimes \sigma_{0}^{\otimes 6} \\
& g_{3}=\sigma_{0}^{\otimes 3} \otimes \sigma_{3} \otimes \sigma_{3} \otimes \sigma_{0}^{\otimes 4} \\
& g_{4}=\sigma_{0}^{\otimes 4} \otimes \sigma_{3} \otimes \sigma_{3} \otimes \sigma_{0}^{\otimes 3} \\
& g_{5}=\sigma_{0}^{\otimes 6} \otimes \sigma_{3} \otimes \sigma_{3} \otimes \sigma_{0} \\
& g_{6}=\sigma_{0}^{\otimes 7} \otimes \sigma_{3} \otimes \sigma_{3} \\
& g_{7}=\sigma_{1}^{\otimes 6} \otimes \sigma_{0}^{\otimes 3} \\
& g_{8}=\sigma_{0}^{\otimes 3} \otimes \sigma_{1}^{\otimes 6}
\end{aligned}
$$

Check matrix
For a stabilizer code generated by g_{1}, \ldots, g_{n-k}, each qubit component of g_{i} is of the form $\alpha \sigma_{0} \sigma_{1} \sigma_{2} \sigma_{3}$, with $\alpha \in\{ \pm 1, \pm i\}$
The check matrix $F=\left(F_{i j}\right)$ is an $(n-k) \times 2 n$ binary matrix constructed as follows:

If g_{i} contains σ_{1} in the j th component, then $f_{i j}=1$ and $f_{i(j+n)}=0$
If g_{i} contains σ_{2} in the j th component, then $f_{i j}=1$ and $f_{i(j+n)}=1$
If g_{i} contains σ_{3} in the j th component,

$$
\text { then } f_{i j}=0 \text { and } f_{i(j+n)}=1
$$

Otherwise $f_{i j}=f_{i(j+n)}=0$
The generators $\left\{g_{i}\right\}$ are independent iff the rows of H are linearly independent

The CSS code as a stabilizer code

Assume $\left(G_{i}, H_{i}\right)$ are generator and parity check matrices for \mathcal{C}_{i}, then the corresponding CSS code can be generated by generators identified from

$$
F=\left[\begin{array}{cc}
G_{2} & 0 \\
0 & H_{1}
\end{array}\right]
$$

