
Quantum
Lecture 10

• Shor

• Calderbank–Shor–Steane

• Stabilizer
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Errors on qubits

A qubit |ψ〉 = α|0〉+ β|1〉 ∈ H, ρ = |ψ〉〈ψ|
|ψ〉 → E0|ψ〉 with probability 1− ε, and |ψ〉 → E1|ψ〉 with
probability ε

Bit flips:

E0 =
√
1− ε

[
1 0
0 1

]
, E1 =

√
ε

[
0 1
1 0

]

Phase flips:

E0 =
√
1− ε

[
1 0
0 1

]
, E1 =

√
ε

[
1 0
0 −1

]
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Depolarizing channel:

E(ρ) = ε

2
I + (1− ε)ρ

Discretization
Any E operating on qubits can be written in terms of operation
elements {Ei} that are linear combinations of the Pauli matrices

σ0 =

[
1 0
0 1

]
, σ1 =

[
0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]

In particular, for the depolarizing channel we can use

I

2
=

1

4
(σ0ρσ0 + σ1ρσ1 + σ2ρσ2 + σ3ρσ3)

{Ei} correctable ⇒ Fj =
∑

i cijEi correctable ⇒ codes designed
for the depolarizing channel will work for any channel
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The Shor code (n = 9)

Let

H =
1√
2

[
1 1
1 −1

]

be the Hadamard operator/gate on qubits

logical 0→ |0〉 and 1→ |1〉 in H, extend to H9 as follows:

map |0〉 to |+〉 = H|0〉, and |1〉 to |−〉 = H|1〉
extend |+〉 → |+++〉 and |−〉 to |−−−〉
extend each |+〉 to (|000〉+ |111〉)/

√
2

and each |−〉 to (|000〉 − |111〉)/
√
2

resulting code

0→ |c0〉 =
1

2
√
2
(|000〉+|111〉)⊗3, 1→ |c1〉 =

1

2
√
2
(|000〉−|111〉)⊗3
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Error correction

The Shor code can correct any error on a single qubit, i.e. the
error-correction conditions PCE∗i EjPC = γijPC are fulfilled for any
Ei on H9 affecting only one dimension

To illustrate, assume E′ = E ⊗ I⊗8 affects the first qubit

Since we can write E = e0I + e1σ1 + e2σ2 + e3σ3, it suffices to
check that PCσ∗i σjPC = γijPC , with

PC = |c0〉〈c0|+ |c1〉〈c1|
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Code subspaces (cosets)

Assume a qubit space H, with computational basis {|0〉, |1〉}, and
let Hn = H⊗n

For x = (x1, . . . , xn) ∈ {0, 1}n, Hn has a basis

{
|x〉 : x ∈ {0, 1}n

}

where |x〉 = |x1 · · ·xn〉 = |x1〉|x2〉 · · · |xn〉
For C ⊂ {0, 1}n of size M = |C| and |x〉 a basis vector in Hn,
define

|x+ C〉 = 1√
M

∑

y∈C
|x+ y〉

where |x+ y〉 denotes the basis vector in Hn corresponding to the
binary vector x+ y
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Calderbank–Shor–Steane codes

Assume C1 and C2 are [n, ki, di] codes, i ∈ {1, 2}, over GF(2),
such that C2 ⊂ C1 (k2 ≤ k1) and d1 ≥ 2t+ 1, and such that C⊥2 is
an [n, n− k2, δ] code with δ ≥ 2t+ 1

The (binary/qubit) CSS quantum code defined by (C1, C2) is the
subspace of H spanned by the basis vectors

|x+ C2〉, x ∈ C1

x and x′ in same coset C2(x)⇒ |x+ C2〉 = |x′ + C2〉
C2(x) 6= C2(x′)⇒ |x+ C2〉 ⊥ |x′ + C2〉
⇒ dimension of the code is |C1|/|C2| = 2k1−k2

Can correct any error pattern on t or fewer qubits

That is, PCE∗i EjPC = γijPC is fulfilled for any {Ei} affecting at
most t dimensions
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Groups

A group is a set G with an associated operation · (’product’)
subject to

• x · (y · z) = (x · y) · z for all x, y, x ∈ G
• There exists an element 1 ∈ G (the neutral or unity), such

that 1 · x = x · 1 = x for all x ∈ G
• For any x ∈ G there exists an element x−1 ∈ G, such that
x · x−1 = x−1 · x = 1

Two elements x and y commute if x · y = y ·x. If any two elements
in a group commute, then the group is commutative or Abelian

The group is finite if the set G is finite

F is a subgroup of G if F is a group and F ⊂ G
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The elements in a set {xi}, xi ∈ G, for a finite group G are
generators for G if any y ∈ G can be written as a product of
elements from {xi}. The set {xi} generates the group G

A finite group G is cyclic of order r if the minimal set of generators
has only one member {x}, so that G = {1, x, x2, . . . , xr−1}
The generators in a set {xi} that generates G are independent if
when removing any one element the set no longer generates G
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Stabilizer Codes

For qubits in the computational basis {|0〉, |1〉}, let

G = {±σ0,±iσ0,±σ1,±iσ1,±σ2,±iσ2,±σ3,±iσ3}

where {σ0, σ1, σ2, σ3} are the Pauli matrices

Then, G is a group under matrix multiplication

Let Gn be the set of all (different results of) n-fold
tensor/Kronecker products of the elements in G, then Gn is also a
group (under matrix multiplication)
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For a subgroup S of Gn, let VS be the subset of {|x〉 : x ∈ {0, 1}n}
such that for |y〉 ∈ VS , T |y〉 = |y〉 for any T ∈ S
Then VS is a vector space, the space stabilized by S

Let S be the group generated by independent generators
{g1, . . . , gn−k} where the gi’s are pairwise commuting elements in
Gn, and such that −I is not in S. Then VS is a 2k-dimensional
vector space,

the resulting space VS is an [n, k] stabilizer code, denoted C(S)
Let PC be the projector on C(S), and note that we can write

PC = 2k−n
n−k∏

`=1

(I + g`)
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For any f ∈ Gn and g ∈ Gn, fg = ±gf
For a stabilizer code C(S), the normalizer of the group S is the set

N(S) = {E ∈ Gn : EgE∗ ∈ S for all g ∈ S}

Also let Z(S) = {E ∈ Gn : Eg = gE for all g ∈ S}
In our setup, N(S) = Z(S)

Error correction

The error-correction conditions PCE∗i EjPC = γijPC are fulfilled for
all {Ei} such that

E∗i Ej /∈ N(S) \ S
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Proof

Consider a set of errors {Ei} such that E∗i Ej /∈ N(S) \ S
For fixed k and `, either E∗kE` ∈ S or E∗kE` ∈ Gn \N(S)

If E∗kE` ∈ S then PCE∗kE`PC = PC

For E∗kE` ∈ Gn \N(S), note that E∗kE`g = −gE∗kE` for some
g ∈ S. Without loss of generality, we can assume g = g1. Thus

E∗kE`PC = 2k−n(I − g1)E∗kE`

n−k∏

`=2

(I + g`)

and hence PCE∗kE`PC = 0 since PC(I − g1) = 0
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The Shor code as a stabilizer code: The following generators will
result in VS = the Shor code,

g1 = σ3 ⊗ σ3 ⊗ σ⊗70

g2 = σ0 ⊗ σ3 ⊗ σ3 ⊗ σ⊗60

g3 = σ⊗30 ⊗ σ3 ⊗ σ3 ⊗ σ⊗40

g4 = σ⊗40 ⊗ σ3 ⊗ σ3 ⊗ σ⊗30

g5 = σ⊗60 ⊗ σ3 ⊗ σ3 ⊗ σ0
g6 = σ⊗70 ⊗ σ3 ⊗ σ3
g7 = σ⊗61 ⊗ σ⊗30

g8 = σ⊗30 ⊗ σ⊗61
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Check matrix

For a stabilizer code generated by g1, . . . , gn−k, each qubit
component of gi is of the form ασ0σ1σ2σ3, with α ∈ {±1,±i}
The check matrix F = (Fij) is an (n− k)× 2n binary matrix
constructed as follows:

If gi contains σ1 in the jth component,
then fij = 1 and fi(j+n) = 0

If gi contains σ2 in the jth component,
then fij = 1 and fi(j+n) = 1

If gi contains σ3 in the jth component,
then fij = 0 and fi(j+n) = 1

Otherwise fij = fi(j+n) = 0

The generators {gi} are independent iff the rows of H are linearly
independent
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The CSS code as a stabilizer code

Assume (Gi, Hi) are generator and parity check matrices for Ci,
then the corresponding CSS code can be generated by generators
identified from

F =

[
G2 0
0 H1

]
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