
Quantum
Lecture 12

• Quantum algorithms

• Quantum search

• The quantum Fourier transform

• Quantum simulation
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Quantum algorithms

O(gn) = {fn : 0 ≤ fn ≤ cgn for n ≥ n0}
for some c > 0 and integer n0 > 0

“Complexity O(gn)” ⇐⇒ true complexity cn ∈ O(gn)
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Quantum Search

Generic search problem

For x ∈ [0 : N − 1] assume that f(x) = 1 for x ∈M ⊂ [0 : N − 1],
|M| =M < N (M � N), and f(x) = 0 o.w.

M is the set of solutions to f(x)

The problem is to find one solution, i.e. one x ∈M
Assume that we have an oracle that can check the value f(x) for
one given x at low cost

In general (i.e. not only for search)

P = {can be solved with complexity O(a polynomial)}
NP = {has an oracle of complexity O(a polynomial)}
Not known if NP = P
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For a basis {|x〉}N−1x=0 the quantum oracle O is the operator

O|x〉 = (−1)f(x)|x〉

The Grover operator

G|x〉 = (2|ψ〉〈ψ| − I)O|x〉

Assume N = 2n and let

|ψ〉 = 2−
n
2

N−1∑

x=0

|x〉

where each |x〉 corresponds to n qubits (|0〉 = |00 · · · 0〉 etc.)
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Let N = [0 : N − 1] \M and

|α〉 = 1√
N −M

∑

x∈N
|x〉, |β〉 = 1√

M

∑

x∈M
|x〉

If we define

cos
θ

2
=

√
N −M
N

⇒ sin
θ

2
=

√
M

N

then

|ψ〉 = cos
θ

2
|α〉+ sin

θ

2
|β〉

and

Gk|ψ〉 = cos

(
2k + 1

2
θ

)
|α〉+ sin

(
2k + 1

2
θ

)
|β〉
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Each time G is applied, the initial state |ψ〉 is taken closer to |β〉

Quantum search (for M < N/2): Prepare the state |ψ〉
Iterate the Grover operator K times

Measure ⇒ a state |x〉′ ∈ {|x〉 : x ∈M} with high probability

For M � N choosing K = d
√
N/M e gives a probability of

success of at least 1−M/N
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The Quantum Fourier Transform

Assume H is N -dimensional, and let {|k〉}N−1k=0 be a basis. For an
arbitrary state |ψ〉 =∑k xk|k〉, let F be the operator defined by

F|ψ〉 =
∑

k

yk|k〉

where

yk =
1√
N

N−1∑

j=0

xje
2πijk/N

is the discrete Fourier transform of {xj}
F|ψ〉 is the quantum Fourier transform of |ψ〉
F is a unitary transformation
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Assume that N = 2n for some integer n, and for j ∈ [0 : N − 1] let

j =
n∑

`=1

j`2
n−`

be the binary expansion of j in terms of {j`}, j` ∈ {0, 1}
Define the notation

j = j1j2 · · · jn =

n∑

`=1

j`2
n−` ∈ [0 : N − 1]

and, for 1 ≤ k ≤ ` ≤ n,

0.jkjk+1 · · · j` =
∑̀

i=k

ji2
k−i−1 ∈ [0, 1)
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Identify {|j〉} with an n-fold qubit basis via |j〉 ↔ |j1 · · · jn〉
Then we can write F|j1 · · · jn〉 =

2−
n
2
(
|0〉+ e2πi0.jn |1〉

)(
|0〉+ e2πi0.jn−1jn |1〉

)
· · ·
(
|0〉+ e2πi0.j1···jn−1jn |1〉

)
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Phase estimation

Assume we wish to estimate the eigenvalue λ = e2πiφ

corresponding to the eigenvector |u〉 of a unitary operator U

Assume φ has an exact t-bits expansion, φ = 0.f1 · · · ft
If we, without knowing φ, can compute the state

2−
t
2

(
|0〉+ e2πi0.ft |1〉

)(
|0〉+ e2πi0.ft−1ft |1〉

)
· · ·
(
|0〉+ e2πi0.f1···ft−1ft |1〉

)

then an inverse Fourier transform will result in |f1f2 · · · ft〉
A measurement in the qubit basis then gives φ

If φ is not on the form 0.f1 · · · ft for some t, then using

t = n+

⌈
log

(
2 +

1

2ε

)⌉

qubits will give n bits accuracy and error probability ≤ ε
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Phase estimation: Need to prepare the state |u〉; Need to implement the

U j mappings; Complexity O(t2)
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Order finding

Greatest common divisor of a set A of integers = biggest integer
that divides all numbers in the set, notation gcd(A)

Two integers q1 and q2 are relatively prime (coprime) if
gcd(q1, q2) = 1

The order r of an integer x modulo a prime number p is the
smallest integer r such that xr = 1 mod p

Finding r is believed to be hard on a classical computer, in the
sense that the complexity is at least linear in p,

Fermat’s little theorem: xp−1 = 1 mod p⇒ r < p

Order of x modulo a non-prime M : xϕ(M) = 1 mod M where

ϕ(M) = |{y : 1 ≤ y ≤M, gcd(y,M) = 1}|

i.e., the complexity is still linear in M
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Defining the unitary operation U as U |y〉 = |xy mod M〉, we have
with

|us〉 =
1√
r

r−1∑

k=0

e−2πisk/r|xk mod M〉

for 0 ≤ s ≤ r − 1, that

U |us〉 = e2πis/r|us〉

Phase estimation ⇒ {e2πis/r} ⇒ r with complexity O((logM)3)

We need r to prepare |us〉: Can use |1〉 instead of |us〉, since

1√
r

r−1∑

s=0

|us〉 = |1〉
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Factoring

Prime factoring: Given a (large) positive integer q, find a prime
number p that divides q

Believed to be hard on a classical computer, with complexity
O(√q) — The factoring problem being “hard” is a crucial
assumption in public key encryption
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Assume q is odd (otherwise 2 is a trivial factor)

For x ∈ [2 : q − 2] suppose x2 = 1 mod q. Then at least one of
gcd(x− 1, q) and gcd(x+ 1, q) is a factor in q

Suppose q has m different prime factors and let x be an integer
chosen uniformly in [1 : q− 1]∩ {s : s and q relatively prime}, then

Pr
(
r is even and x

r
2 6= −1 mod q

)
≥ 1− 1

2m

where r is the order of x mod q
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Algorithm: Given an odd number q > 1

Check if q = ab for some prime a and integer b

Choose x at random in [1 : q − 1]; if gcd(x, q) > 1 return gcd(x, q)

Use quantum order finding to find the order r of x mod q

If r is even and xr/2 6= −1 mod q then compute gcd(xr/2 − 1, q)
and gcd(xr/2 + 1, q) and check if one of these is a factor

Otherwise terminate with an error

The steps performed using classical computing have complexity
O((log q)3), so the overall complexity relies on the order finding
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Quantum Simulation

Classical system with state in Rd: In general, complexity of
simulation grows as O(d)
N quantum particles with states in H of dimension d, complexity
of simulating the combined system is in general O(dN )

Assume N interacting sub-systems such that the evolution of the
joint system is described by

i
d

dt
|ψ〉 = H|ψ〉 ⇒ |ψ(t)〉 = e−iHt|ψ(0)〉

with H of the form

H =
L∑

`=1

H`

where L = O(N) and each H` acts only on few subsystems
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Assume the action of each H`, exp(−iH`t), can be simulated
efficiently on a quantum computer

We get
|ψ(t)〉 = e−iHt|ψ(0)〉

where we can use the Trotter formula

lim
n→∞

(e
iAt
n e

iBt
n )n = ei(A+B)t

(for A and B self-adjoint/Hermitian)

Quantum simulation:

For subsystems of dimension O(d), the total dimension is O(dN )
Approximate each H` at resolution O(Nk) (some k ≥ 1) qubits

Simulate each subsystem on a quantum computer

Combine using Trotter’s formula, or similar
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