Quantum

Lecture 12

- Quantum algorithms
- Quantum search
- The quantum Fourier transform
- Quantum simulation

Mikael Skoglund, Quantum Info

1/18

Quantum algorithms

 $\begin{aligned} \mathcal{O}(g_n) &= \{f_n : 0 \leq f_n \leq cg_n \text{ for } n \geq n_0\} \\ & \text{ for some } c > 0 \text{ and integer } n_0 > 0 \\ \text{``Complexity } \mathcal{O}(g_n)\text{''} \iff \text{ true complexity } c_n \in \mathcal{O}(g_n) \end{aligned}$

Quantum Search

Generic search problem

For $x \in [0: N-1]$ assume that f(x) = 1 for $x \in \mathcal{M} \subset [0: N-1]$, $|\mathcal{M}| = M < N \ (M \ll N)$, and f(x) = 0 o.w.

 \mathcal{M} is the set of solutions to f(x)

The problem is to find *one* solution, i.e. one $x \in \mathcal{M}$

Assume that we have an oracle that can check the value f(x) for one given x at low cost

In general (i.e. not only for search) $\mathbb{P} = \{ \text{can be solved with complexity } \mathcal{O}(\text{a polynomial}) \}$ $\mathbb{NP} = \{ \text{has an oracle of complexity } \mathcal{O}(\text{a polynomial}) \}$ Not known if $\mathbb{NP} = \mathbb{P}$

Mikael Skoglund, Quantum Info

For a basis $\{|x\rangle\}_{x=0}^{N-1}$ the quantum oracle O is the operator

$$O|x\rangle = (-1)^{f(x)}|x\rangle$$

The Grover operator

 $G|x\rangle = (2|\psi\rangle\langle\psi| - I)O|x\rangle$

Assume $N = 2^n$ and let

$$|\psi\rangle = 2^{-\frac{n}{2}} \sum_{x=0}^{N-1} |x\rangle$$

where each $|x\rangle$ corresponds to *n* qubits ($|0\rangle = |00\cdots 0\rangle$ etc.)

success of at le

Let $\mathcal{N} = [0: N-1] \setminus \mathcal{M}$ and

$$|\alpha\rangle = \frac{1}{\sqrt{N-M}} \sum_{x \in \mathcal{N}} |x\rangle, \quad |\beta\rangle = \frac{1}{\sqrt{M}} \sum_{x \in \mathcal{M}} |x\rangle$$

If we define

 $\cos\frac{\theta}{2} = \sqrt{\frac{N-M}{N}} \Rightarrow \sin\frac{\theta}{2} = \sqrt{\frac{M}{N}}$

then

$$|\psi\rangle = \cos\frac{\theta}{2}|\alpha\rangle + \sin\frac{\theta}{2}|\beta\rangle$$

and

$$G^{k}|\psi\rangle = \cos\left(\frac{2k+1}{2}\theta\right)|\alpha\rangle + \sin\left(\frac{2k+1}{2}\theta\right)|\beta\rangle$$

Mikael Skoglund, Quantum Info

Each time G is applied, the initial state $|\psi\rangle$ is taken closer to $|\beta\rangle$

Quantum search (for M < N/2): Prepare the state $|\psi
angle$

Iterate the Grover operator K times

Measure \Rightarrow a state $|x\rangle' \in \{|x\rangle : x \in \mathcal{M}\}$ with high probability For $M \ll N$ choosing $K = \lceil \sqrt{N/M} \rceil$ gives a probability of success of at least 1 - M/N

The Quantum Fourier Transform

Assume \mathcal{H} is *N*-dimensional, and let $\{|k\rangle\}_{k=0}^{N-1}$ be a basis. For an arbitrary state $|\psi\rangle = \sum_k x_k |k\rangle$, let \mathcal{F} be the operator defined by

$$\mathcal{F}|\psi\rangle = \sum_{k} y_k |k\rangle$$

where

$$y_k = \frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} x_j e^{2\pi i j k/N}$$

is the discrete Fourier transform of $\{x_j\}$ $\mathcal{F}|\psi\rangle$ is the quantum Fourier transform of $|\psi\rangle$ \mathcal{F} is a unitary transformation

Mikael Skoglund, Quantum Info

Assume that $N = 2^n$ for some integer n, and for $j \in [0: N-1]$ let

$$j = \sum_{\ell=1}^{n} j_{\ell} 2^{n-\ell}$$

be the binary expansion of j in terms of $\{j_{\ell}\}$, $j_{\ell} \in \{0, 1\}$ Define the notation

$$j = j_1 j_2 \cdots j_n = \sum_{\ell=1}^n j_\ell 2^{n-\ell} \in [0: N-1]$$

and, for $1 \leq k \leq \ell \leq n$,

$$0.j_k j_{k+1} \cdots j_{\ell} = \sum_{i=k}^{\ell} j_i 2^{k-i-1} \in [0,1)$$

Identify $\{|j\rangle\}$ with an *n*-fold qubit basis via $|j\rangle \leftrightarrow |j_1 \cdots j_n\rangle$ Then we can write $\mathcal{F}|j_1 \cdots j_n\rangle =$

$$2^{-\frac{n}{2}} \left(|0\rangle + e^{2\pi i 0.j_n} |1\rangle \right) \left(|0\rangle + e^{2\pi i 0.j_{n-1}j_n} |1\rangle \right) \cdots \left(|0\rangle + e^{2\pi i 0.j_1 \cdots j_{n-1}j_n} |1\rangle \right)$$

Mikael Skoglund, Quantum Info

Phase estimation

Assume we wish to estimate the eigenvalue $\lambda = e^{2\pi i \phi}$ corresponding to the eigenvector $|u\rangle$ of a unitary operator UAssume ϕ has an exact *t*-bits expansion, $\phi = 0.f_1 \cdots f_t$ If we, without knowing ϕ , can compute the state

$$2^{-\frac{t}{2}} \left(|0\rangle + e^{2\pi i 0.f_t} |1\rangle \right) \left(|0\rangle + e^{2\pi i 0.f_{t-1}f_t} |1\rangle \right) \cdots \left(|0\rangle + e^{2\pi i 0.f_1 \cdots f_{t-1}f_t} |1\rangle \right)$$

then an inverse Fourier transform will result in $|f_1f_2\cdots f_t
angle$

A measurement in the qubit basis then gives ϕ

If ϕ is not on the form $0.f_1 \cdots f_t$ for some t, then using

$$t = n + \left\lceil \log\left(2 + \frac{1}{2\varepsilon}\right) \right\rceil$$

qubits will give n bits accuracy and error probability $\leq \varepsilon$

Phase estimation: Need to prepare the state $|u\rangle$; Need to implement the U^j mappings; Complexity $\mathcal{O}(t^2)$

Mikael Skoglund, Quantum Info

Order finding

Greatest common divisor of a set A of integers = biggest integer that divides all numbers in the set, notation gcd(A)

Two integers q_1 and q_2 are relatively prime (coprime) if $gcd(q_1, q_2) = 1$

The order r of an integer x modulo a prime number p is the smallest integer r such that $x^r=1 \mod p$

Finding r is believed to be hard on a classical computer, in the sense that the complexity is at least linear in p,

Fermat's little theorem: $x^{p-\hat{1}} = 1 \ \mathrm{mod} \ p \Rightarrow r < p$

Order of x modulo a non-prime $M \colon x^{\varphi(M)} = 1 \mod M$ where

 $\varphi(M)=|\{y:1\leq y\leq M,\ \gcd(y,M)=1\}|$

i.e., the complexity is still linear in M

Defining the unitary operation U as $U|y\rangle = |xy \mbox{ mod } M\rangle$, we have with

$$|u_s\rangle = \frac{1}{\sqrt{r}} \sum_{k=0}^{r-1} e^{-2\pi i s k/r} |x^k \mod M\rangle$$

for $0 \leq s \leq r-1$, that

$$U|u_s\rangle = e^{2\pi i s/r}|u_s\rangle$$

Phase estimation $\Rightarrow \{e^{2\pi i s/r}\} \Rightarrow r$ with complexity $\mathcal{O}((\log M)^3)$

We need r to prepare $|u_s
angle$: Can use |1
angle instead of $|u_s
angle$, since

$$\frac{1}{\sqrt{r}}\sum_{s=0}^{r-1}|u_s\rangle = |1\rangle$$

Mikael Skoglund, Quantum Info

Factoring

Prime factoring: Given a (large) positive integer q, find a prime number p that divides q

Believed to be hard on a classical computer, with complexity $\mathcal{O}(\sqrt{q})$ — The factoring problem being "hard" is a crucial assumption in *public key encryption*

Mikael Skoglund, Quantum Info

Assume q is odd (otherwise 2 is a trivial factor)

For $x \in [2:q-2]$ suppose $x^2 = 1 \mod q$. Then at least one of gcd(x-1,q) and gcd(x+1,q) is a factor in q

Suppose q has m different prime factors and let x be an integer chosen uniformly in $[1:q-1] \cap \{s:s \text{ and } q \text{ relatively prime}\}$, then

$$\Pr\left(r \text{ is even and } x^{\frac{r}{2}} \neq -1 \mod q\right) \geq 1 - \frac{1}{2^m}$$

where r is the order of $x \mod q$

Mikael Skoglund, Quantum Info

Algorithm: Given an odd number q > 1Check if $q = a^b$ for some prime a and integer bChoose x at random in [1:q-1]; if gcd(x,q) > 1 return gcd(x,q)Use *quantum order finding* to find the order r of $x \mod q$ If r is even and $x^{r/2} \neq -1 \mod q$ then compute $gcd(x^{r/2} - 1, q)$ and $gcd(x^{r/2} + 1, q)$ and check if one of these is a factor Otherwise terminate with an error

The steps performed using classical computing have complexity $\mathcal{O}((\log q)^3)$, so the overall complexity relies on the order finding

Quantum Simulation

Classical system with state in \mathbb{R}^d : In general, complexity of simulation grows as $\mathcal{O}(d)$

N quantum particles with states in ${\mathcal H}$ of dimension d, complexity of simulating the combined system is in general ${\mathcal O}(d^N)$

Assume ${\cal N}$ interacting sub-systems such that the evolution of the joint system is described by

$$i\frac{d}{dt}|\psi\rangle = H|\psi\rangle \Rightarrow |\psi(t)\rangle = e^{-iHt}|\psi(0)\rangle$$

with ${\boldsymbol{H}}$ of the form

$$H = \sum_{\ell=1}^{L} H_{\ell}$$

where $L = \mathcal{O}(N)$ and each H_ℓ acts only on few subsystems

Mikael Skoglund, Quantum Info

Assume the action of each H_{ℓ} , $\exp(-iH_{\ell}t)$, can be simulated efficiently on a quantum computer

We get

$$|\psi(t)\rangle = e^{-iHt}|\psi(0)\rangle$$

where we can use the Trotter formula

$$\lim_{n \to \infty} (e^{\frac{iAt}{n}} e^{\frac{iBt}{n}})^n = e^{i(A+B)t}$$

(for A and B self-adjoint/Hermitian)

Quantum simulation:

For subsystems of dimension $\mathcal{O}(d)$, the total dimension is $\mathcal{O}(d^N)$

Approximate each H_{ℓ} at resolution $\mathcal{O}(N^k)$ (some $k \geq 1$) qubits

Simulate each subsystem on a quantum computer

Combine using Trotter's formula, or similar