Quantum

Lecture 12

- Quantum algorithms

- Quantum search

- The quantum Fourier transform

- Quantum simulation

Quantum algorithms

$$
\begin{aligned}
& \mathcal{O}\left(g_{n}\right)=\left\{f_{n}: 0 \leq f_{n} \leq c g_{n} \text { for } n \geq n_{0}\right\} \\
& \text { for some } c>0 \text { and integer } n_{0}>0
\end{aligned}
$$

"Complexity $\mathcal{O}\left(g_{n}\right) " \Longleftrightarrow$ true complexity $c_{n} \in \mathcal{O}\left(g_{n}\right)$

Quantum Search

Generic search problem
For $x \in[0: N-1]$ assume that $f(x)=1$ for $x \in \mathcal{M} \subset[0: N-1]$, $|\mathcal{M}|=M<N(M \ll N)$, and $f(x)=0$ o.w.
\mathcal{M} is the set of solutions to $f(x)$
The problem is to find one solution, i.e. one $x \in \mathcal{M}$
Assume that we have an oracle that can check the value $f(x)$ for one given x at low cost

In general (i.e. not only for search)
$\mathbb{P}=\{$ can be solved with complexity \mathcal{O} (a polynomial) $\}$
$\mathbb{N} \mathbb{P}=\{$ has an oracle of complexity \mathcal{O} (a polynomial) $\}$
Not known if $\mathbb{N P}=\mathbb{P}$

For a basis $\{|x\rangle\}_{x=0}^{N-1}$ the quantum oracle O is the operator

$$
O|x\rangle=(-1)^{f(x)}|x\rangle
$$

The Grover operator
$G|x\rangle=(2|\psi\rangle\langle\psi|-I) O|x\rangle$
Assume $N=2^{n}$ and let

$$
|\psi\rangle=2^{-\frac{n}{2}} \sum_{x=0}^{N-1}|x\rangle
$$

where each $|x\rangle$ corresponds to n qubits $(|0\rangle=|00 \cdots 0\rangle$ etc.)

Let $\mathcal{N}=[0: N-1] \backslash \mathcal{M}$ and

$$
|\alpha\rangle=\frac{1}{\sqrt{N-M}} \sum_{x \in \mathcal{N}}|x\rangle, \quad|\beta\rangle=\frac{1}{\sqrt{M}} \sum_{x \in \mathcal{M}}|x\rangle
$$

If we define

$$
\cos \frac{\theta}{2}=\sqrt{\frac{N-M}{N}} \Rightarrow \sin \frac{\theta}{2}=\sqrt{\frac{M}{N}}
$$

then

$$
|\psi\rangle=\cos \frac{\theta}{2}|\alpha\rangle+\sin \frac{\theta}{2}|\beta\rangle
$$

and

$$
G^{k}|\psi\rangle=\cos \left(\frac{2 k+1}{2} \theta\right)|\alpha\rangle+\sin \left(\frac{2 k+1}{2} \theta\right)
$$

Each time G is applied, the initial state $|\psi\rangle$ is taken closer to $|\beta\rangle$
Quantum search (for $M<N / 2$): Prepare the state $|\psi\rangle$
Iterate the Grover operator K times
Measure \Rightarrow a state $|x\rangle^{\prime} \in\{|x\rangle: x \in \mathcal{M}\}$ with high probability For $M \ll N$ choosing $K=\lceil\sqrt{N / M}\rceil$ gives a probability of success of at least $1-M / N$

The Quantum Fourier Transform

Assume \mathcal{H} is N-dimensional, and let $\{|k\rangle\}_{k=0}^{N-1}$ be a basis. For an arbitrary state $|\psi\rangle=\sum_{k} x_{k}|k\rangle$, let \mathcal{F} be the operator defined by

$$
\mathcal{F}|\psi\rangle=\sum_{k} y_{k}|k\rangle
$$

where

$$
y_{k}=\frac{1}{\sqrt{N}} \sum_{j=0}^{N-1} x_{j} e^{2 \pi i j k / N}
$$

is the discrete Fourier transform of $\left\{x_{j}\right\}$
$\mathcal{F}|\psi\rangle$ is the quantum Fourier transform of $|\psi\rangle$
\mathcal{F} is a unitary transformation

Assume that $N=2^{n}$ for some integer n, and for $j \in[0: N-1]$ let

$$
j=\sum_{\ell=1}^{n} j_{\ell} 2^{n-\ell}
$$

be the binary expansion of j in terms of $\left\{j_{\ell}\right\}, j_{\ell} \in\{0,1\}$
Define the notation

$$
j=j_{1} j_{2} \cdots j_{n}=\sum_{\ell=1}^{n} j_{\ell} 2^{n-\ell} \in[0: N-1]
$$

and, for $1 \leq k \leq \ell \leq n$,

$$
0 . j_{k} j_{k+1} \cdots j_{\ell}=\sum_{i=k}^{\ell} j_{i} 2^{k-i-1} \in[0,1)
$$

Identify $\{|j\rangle\}$ with an n-fold qubit basis via $|j\rangle \leftrightarrow\left|j_{1} \cdots j_{n}\right\rangle$
Then we can write $\mathcal{F}\left|j_{1} \cdots j_{n}\right\rangle=$
$2^{-\frac{n}{2}}\left(|0\rangle+e^{2 \pi i 0 . j_{n}}|1\rangle\right)\left(|0\rangle+e^{2 \pi i 0 . j_{n-1} j_{n}}|1\rangle\right) \cdots\left(|0\rangle+e^{2 \pi i 0 \cdot j_{1} \cdots j_{n-1} j_{n}}|1\rangle\right)$

Phase estimation

Assume we wish to estimate the eigenvalue $\lambda=e^{2 \pi i \phi}$ corresponding to the eigenvector $|u\rangle$ of a unitary operator U

Assume ϕ has an exact t-bits expansion, $\phi=0 . f_{1} \cdots f_{t}$
If we, without knowing ϕ, can compute the state
$2^{-\frac{t}{2}}\left(|0\rangle+e^{2 \pi i 0 . f_{t}}|1\rangle\right)\left(|0\rangle+e^{2 \pi i 0 . f_{t-1} f_{t}}|1\rangle\right) \cdots\left(|0\rangle+e^{2 \pi i 0 . f_{1} \cdots f_{t-1} f_{t}}|1\rangle\right)$
then an inverse Fourier transform will result in $\left|f_{1} f_{2} \cdots f_{t}\right\rangle$
A measurement in the qubit basis then gives ϕ
If ϕ is not on the form $0 . f_{1} \cdots f_{t}$ for some t, then using

$$
t=n+\left\lceil\log \left(2+\frac{1}{2 \varepsilon}\right)\right\rceil
$$

qubits will give n bits accuracy and error probability $\leq \varepsilon$

Phase estimation: Need to prepare the state $|u\rangle$; Need to implement the U^{j} mappings; Complexity $\mathcal{O}\left(t^{2}\right)$

Order finding

Greatest common divisor of a set A of integers = biggest integer that divides all numbers in the set, notation $\operatorname{gcd}(A)$
Two integers q_{1} and q_{2} are relatively prime (coprime) if $\operatorname{gcd}\left(q_{1}, q_{2}\right)=1$

The order r of an integer x modulo a prime number p is the smallest integer r such that $x^{r}=1 \bmod p$
Finding r is believed to be hard on a classical computer, in the sense that the complexity is at least linear in p,

Fermat's little theorem: $x^{p-1}=1 \bmod p \Rightarrow r<p$
Order of x modulo a non-prime $M: x^{\varphi(M)}=1 \bmod M$ where

$$
\varphi(M)=|\{y: 1 \leq y \leq M, \operatorname{gcd}(y, M)=1\}|
$$

i.e., the complexity is still linear in M

Defining the unitary operation U as $U|y\rangle=|x y \bmod M\rangle$, we have with

$$
\left|u_{s}\right\rangle=\frac{1}{\sqrt{r}} \sum_{k=0}^{r-1} e^{-2 \pi i s k / r}\left|x^{k} \bmod M\right\rangle
$$

for $0 \leq s \leq r-1$, that

$$
U\left|u_{s}\right\rangle=e^{2 \pi i s / r}\left|u_{s}\right\rangle
$$

Phase estimation $\Rightarrow\left\{e^{2 \pi i s / r}\right\} \Rightarrow r$ with complexity $\mathcal{O}\left((\log M)^{3}\right)$
We need r to prepare $\left|u_{s}\right\rangle$: Can use $|1\rangle$ instead of $\left|u_{s}\right\rangle$, since

$$
\frac{1}{\sqrt{r}} \sum_{s=0}^{r-1}\left|u_{s}\right\rangle=|1\rangle
$$

Factoring

Prime factoring: Given a (large) positive integer q, find a prime number p that divides q

Believed to be hard on a classical computer, with complexity $\mathcal{O}(\sqrt{q})$ - The factoring problem being "hard" is a crucial assumption in public key encryption

Assume q is odd (otherwise 2 is a trivial factor)
For $x \in[2: q-2]$ suppose $x^{2}=1 \bmod q$. Then at least one of $\operatorname{gcd}(x-1, q)$ and $\operatorname{gcd}(x+1, q)$ is a factor in q
Suppose q has m different prime factors and let x be an integer chosen uniformly in $[1: q-1] \cap\{s: s$ and q relatively prime $\}$, then

$$
\operatorname{Pr}\left(r \text { is even and } x^{\frac{r}{2}} \neq-1 \bmod q\right) \geq 1-\frac{1}{2^{m}}
$$

where r is the order of $x \bmod q$

Algorithm: Given an odd number $q>1$
Check if $q=a^{b}$ for some prime a and integer b
Choose x at random in $[1: q-1]$; if $\operatorname{gcd}(x, q)>1$ return $\operatorname{gcd}(x, q)$
Use quantum order finding to find the order r of $x \bmod q$
If r is even and $x^{r / 2} \neq-1 \bmod q$ then compute $\operatorname{gcd}\left(x^{r / 2}-1, q\right)$ and $\operatorname{gcd}\left(x^{r / 2}+1, q\right)$ and check if one of these is a factor Otherwise terminate with an error

The steps performed using classical computing have complexity $\mathcal{O}\left((\log q)^{3}\right)$, so the overall complexity relies on the order finding

Quantum Simulation

Classical system with state in \mathbb{R}^{d} : In general, complexity of simulation grows as $\mathcal{O}(d)$
N quantum particles with states in \mathcal{H} of dimension d, complexity of simulating the combined system is in general $\mathcal{O}\left(d^{N}\right)$

Assume N interacting sub-systems such that the evolution of the joint system is described by

$$
i \frac{d}{d t}|\psi\rangle=H|\psi\rangle \Rightarrow|\psi(t)\rangle=e^{-i H t}|\psi(0)\rangle
$$

with H of the form

$$
H=\sum_{\ell=1}^{L} H_{\ell}
$$

where $L=\mathcal{O}(N)$ and each H_{ℓ} acts only on few subsystems

Assume the action of each $H_{\ell}, \exp \left(-i H_{\ell} t\right)$, can be simulated efficiently on a quantum computer
We get

$$
|\psi(t)\rangle=e^{-i H t}|\psi(0)\rangle
$$

where we can use the Trotter formula

$$
\lim _{n \rightarrow \infty}\left(e^{\frac{i A t}{n}} e^{\frac{i B t}{n}}\right)^{n}=e^{i(A+B) t}
$$

(for A and B self-adjoint/Hermitian)

Quantum simulation:

For subsystems of dimension $\mathcal{O}(d)$, the total dimension is $\mathcal{O}\left(d^{N}\right)$
Approximate each H_{ℓ} at resolution $\mathcal{O}\left(N^{k}\right)$ (some $k \geq 1$) qubits
Simulate each subsystem on a quantum computer
Combine using Trotter's formula, or similar

