Quantum

Lecture 2

- Dirac notation
- Hilbert space quantum mechanics

Mikael Skoglund, Quantum Info

Dirac Notation

A Hilbert space \mathcal{H} , with inner product $\langle \cdot , \cdot \rangle = g(\cdot, \cdot)$ Elements in \mathcal{H} are denoted $|x\rangle$, kets Elements in \mathcal{H}^* are denoted $\langle x|$, bras $\langle x| \in \mathcal{H}^*$ iff $\langle x|(|x\rangle) = g(|y\rangle, |x\rangle)$ for some $|y\rangle \in \mathcal{H}$ for all $|x\rangle \in \mathcal{H}$ \Rightarrow for $|z\rangle \in \mathcal{H}$ the corresponding bra is $\langle z|(\cdot) = g(z, \cdot)$

Hence the notation $\langle x|y \rangle$ ("bra(c)ket") means *both/either* mapping $|y \rangle$ to $\langle x|(|y \rangle)$ and/or carrying out the inner product $g(|x \rangle, |y \rangle) = \langle |x \rangle, |y \rangle \rangle$

Linear operators O act on kets, notation $O(|x\rangle) = O|x\rangle$

The outer product $|x\rangle\langle y|$ between $|x\rangle$ and $|y\rangle$ is the linear operator L that solves $L|z\rangle = g(|y\rangle, |z\rangle)|x\rangle = \langle y|z\rangle|x\rangle$

For compact self-adjoint operators O we have

$$O|x\rangle = \sum_{i} \lambda_i P_i(|x\rangle)$$

where $\{\lambda_i\}$ are the (distinct) eigenvalues and P_i is the projection onto

$$\{|x\rangle: O|x\rangle = \lambda_i |x\rangle\}$$

That is, $P_i(|x\rangle) = \sum_j \langle x | u_{ij} \rangle | u_{ij} \rangle$ over all orthonormal eigenvectors $|u_{ij}\rangle$ corresponding to the *i*th eigenvalue λ_i

Since $\langle x|u_{ij}\rangle|u_{ij}\rangle = |u_{ij}\rangle\langle u_{ij}|(|x\rangle) = |u_{ij}\rangle\langle u_{ij}|x\rangle$ (where $\langle u_{ij}|x\rangle = \langle x|u_{ij}\rangle$ becase O is self-adjoint) we get

$$P_i = \sum_j |u_{ij}\rangle \langle u_{ij}|$$

Mikael Skoglund, Quantum Info

Because the $|u_{ij}
angle$'s form an orthonormal basis we can write

$$O(\cdot) = \sum_{i} \lambda_{i} P_{i}(\cdot) = \sum_{i} \lambda_{i} \sum_{j} |u_{ij}\rangle \langle u_{ij}|(\cdot), \quad |x\rangle = \sum_{ij} a_{ij} |u_{ij}\rangle$$

to get

$$O|x\rangle = \sum_{i} \lambda_i \sum_{j} a_{ij} |u_{ij}\rangle$$

and

$$g(|x\rangle, O|x\rangle) = \langle x|O|x\rangle = \sum_{i} \lambda_{i} \sum_{j} |\langle x|u_{ij}\rangle|^{2} = \sum_{i} \lambda_{i} \sum_{j} |a_{ij}|^{2}$$

Notation for tensor product, $x\otimes y=|x
angle|y
angle=|xy
angle$ (more in Lec. 3)

For operators O and T, we have the composition OT defined via $OT|x\rangle = O(T(|x\rangle))$

The Hilbert–Schmidt inner product (O, T) between operators O and T is obtained as $(O, T) = Tr(O^*T)$

The commutator between O and T is [O,T] = OT - TO, if [O,T] = 0 the operators O and T commute

Similarly, the anti-commutator is $\{O, T\} = OT + TO$, if $\{O, T\} = 0$ the operators O and T anti-commute

Mikael Skoglund, Quantum Info

The Postulates of Hilbert Space Quantum Mechanics

Postulate 1: The state of any isolated quantum system is fully characterized by a state vector $|\psi\rangle$ in a Hilbert space \mathcal{H} , the state space

 $|\psi_1\rangle$ and $|\psi_2\rangle$ in \mathcal{H} are considered to represent the same quantum mechanical state if $|\psi_2\rangle = \alpha |\psi_1\rangle$ for some $\alpha \in \mathbb{C}$. We will implicitly assume that $||\psi\rangle|| = 1$ always

Postulate 2: The time-evolution of any closed quantum system is fully described by a unitary linear mapping. That is, if the state is $|\psi_1\rangle$ at time t_1 , then the state at time t_2 is $|\psi_2\rangle = U|\psi_1\rangle$ where U is unitary and depends only on (t_1, t_2)

Mikael Skoglund, Quantum Info

The evolution of the state $|\psi(t)\rangle$ characterizing a closed quantum system evolving in continuous time is described by the Schrödinger equation

$$i\hbar\frac{d|\psi(t)\rangle}{dt} = H|\psi(t)\rangle$$

where \hbar is Planck's constant and where H is a fixed self-adjoint operator known as the Hamiltonian

For continuous-time systems, the validity of the Schrödinger equation can be verified to imply Postulate 2

Postulate 3: An isolated quantum system can interact with the outside world by measurement. Any measurement that can be performed is characterized by a set of linear operators $\{M_n\}$, where the index n refers to different outcomes of the experiment

The measurement operators satisfy the completeness condition

$$\sum_{n} M_n^* M_n = I$$

where I is the unity operator $(I|x\rangle = |x\rangle$ for any $|x\rangle \in \mathcal{H})$

Mikael Skoglund, Quantum Info

If an isolated system is in state $|\psi\rangle$ immediately before measurement, then the probability that result n is observed is

$$p(n) = \langle \psi | E_n | \psi \rangle$$

where $\{E_n\}$ are the POVM elements, $E_n = M_n^* M_n$

After observing result n, the new state is $(p(n))^{-1/2}M_n|\psi\rangle$

The only way to obtain information about the state $|\psi\rangle$ of a quantum system is by measurement. Two states $|\psi_1\rangle$ and $|\psi_2\rangle$ can only be distinguished "with probability one" iff $\langle \psi_1 | \psi_2 \rangle = 0$

Projective measurements: The special case of a projective measurement is fully characterized by a compact linear self-adjoint operator M, with eigen-decomposition

$$M = \sum_{i} \lambda_i P_i$$

(where P_i projects onto $\{|x\rangle: M|x\rangle = \lambda_i |x\rangle, \langle x|x\rangle = 1\}$)

The possible (real, numerical) outcomes of the measurement are the eigenvalues $\{\lambda_i\}$, occurring with probabilities

$$p(i) = \langle \psi | P_i | \psi \rangle$$

Similarly, the expected outcome of the measurement is

$$\langle M \rangle = \sum_{i} p(i)\lambda_{i} = \langle \psi | M | \psi \rangle$$

Mikael Skoglund, Quantum Info

Unobservable characterization

The system is in state $|\psi\rangle$. The value of $|\psi\rangle$ can be unknown, or known in the case where the system was prepared in this state (or as $|\psi_0\rangle$ and then evolved to $|\psi\rangle$ according to Schrödinger) When measured, the state $|\psi\rangle$ collapses to an eigen-state/space of the measurement, $|\psi\rangle \rightarrow P_i |\psi\rangle$

There is no way the state can be observed without collapsing

Uncertainty relation [Heisenberg/Robertson]: For (projective) measurements A and B, let $\Delta A = A - \langle A \rangle I$, $\Delta B = B - \langle B \rangle I$, then for a given state $|\psi\rangle$

$$\langle (\Delta A)^2 \rangle \langle (\Delta B)^2 \rangle \ge \frac{1}{4} |\langle [A, B] \rangle|^2$$

where $\langle (\Delta A)^2 \rangle = \langle \psi | (\Delta A)^2 | \psi \rangle$, $\langle (\Delta B)^2 \rangle = \langle \psi | (\Delta B)^2 | \psi \rangle$ and $\langle [A, B] \rangle = \langle \psi | [A, B] | \psi \rangle$

Mikael Skoglund, Quantum Info

13/15

Qubits

Assume a quantum system is fully described by a two-dimensional space \mathcal{H} . The state $|\psi\rangle \in \mathcal{H}$ is then called a quantum bit or qubit Given a projective measurement M on \mathcal{H} with eigenvalues $\{\lambda_0, \lambda_1\}$ and corresponding eigenvectors $|0\rangle$ and $|1\rangle$ we can write any state as

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$$

and the measurement as $M = \lambda_0 |0\rangle \langle 0| + \lambda_1 |1\rangle \langle 1|$

The outcome of the measurement is either " $|0\rangle$ " with numerical value λ_0 or " $|1\rangle$ " with value λ_1

 λ_0 is measured with probability $\langle \psi | 0 \rangle \langle 0 | \psi \rangle = |\alpha|^2$ and λ_1 with probability $\langle \psi | 1 \rangle \langle 1 | \psi \rangle = |\beta|^2$

Bloch sphere representation

$$|\psi\rangle = \cos\frac{\theta}{2}|0\rangle + e^{i\varphi}\sin\frac{\theta}{2}|1\rangle$$

Mikael Skoglund, Quantum Info