Quantum

Lecture 2

- Dirac notation
- Hilbert space quantum mechanics

Dirac Notation

A Hilbert space \mathcal{H}, with inner product $\langle\cdot, \cdot\rangle=g(\cdot, \cdot)$
Elements in \mathcal{H} are denoted $|x\rangle$, kets
Elements in \mathcal{H}^{*} are denoted $\langle x|$, bras
$\langle x| \in \mathcal{H}^{*}$ iff

$$
\langle x|(|x\rangle)=g(|y\rangle,|x\rangle)
$$

for some $|y\rangle \in \mathcal{H}$ for all $|x\rangle \in \mathcal{H}$

$$
\Rightarrow \text { for }|z\rangle \in \mathcal{H} \text { the corresponding bra is }\langle z|(\cdot)=g(z, \cdot)
$$

Hence the notation $\langle x \mid y\rangle$ ("bra(c)ket") means both/either mapping $|y\rangle$ to $\langle x|(|y\rangle)$ and/or carrying out the inner product $g(|x\rangle,|y\rangle)=\langle\mid x\rangle,|y\rangle\rangle$

Linear operators O act on kets, notation $O(|x\rangle)=O|x\rangle$
The outer product $|x\rangle\langle y|$ between $|x\rangle$ and $|y\rangle$ is the linear operator L that solves $L|z\rangle=g(|y\rangle,|z\rangle)|x\rangle=\langle y \mid z\rangle|x\rangle$

For compact self-adjoint operators O we have

$$
O|x\rangle=\sum_{i} \lambda_{i} P_{i}(|x\rangle)
$$

where $\left\{\lambda_{i}\right\}$ are the (distinct) eigenvalues and P_{i} is the projection onto

$$
\left\{|x\rangle: O|x\rangle=\lambda_{i}|x\rangle\right\}
$$

That is, $P_{i}(|x\rangle)=\sum_{j}\left\langle x \mid u_{i j}\right\rangle\left|u_{i j}\right\rangle$ over all orthonormal eigenvectors $\left|u_{i j}\right\rangle$ corresponding to the i th eigenvalue λ_{i}
Since $\left\langle x \mid u_{i j}\right\rangle\left|u_{i j}\right\rangle=\left|u_{i j}\right\rangle\left\langle u_{i j}\right|(|x\rangle)=\left|u_{i j}\right\rangle\left\langle u_{i j} \mid x\right\rangle$ (where $\left\langle u_{i j} \mid x\right\rangle=\left\langle x \mid u_{i j}\right\rangle$ becase O is self-adjoint) we get

$$
P_{i}=\sum_{j}\left|u_{i j}\right\rangle\left\langle u_{i j}\right|
$$

Because the $\left|u_{i j}\right\rangle$'s form an orthonormal basis we can write

$$
O(\cdot)=\sum_{i} \lambda_{i} P_{i}(\cdot)=\sum_{i} \lambda_{i} \sum_{j}\left|u_{i j}\right\rangle\left\langle u_{i j}\right|(\cdot), \quad|x\rangle=\sum_{i j} a_{i j}\left|u_{i j}\right\rangle
$$

to get

$$
O|x\rangle=\sum_{i} \lambda_{i} \sum_{j} a_{i j}\left|u_{i j}\right\rangle
$$

and

$$
g(|x\rangle, O|x\rangle)=\langle x| O|x\rangle=\sum_{i} \lambda_{i} \sum_{j}\left|\left\langle x \mid u_{i j}\right\rangle\right|^{2}=\sum_{i} \lambda_{i} \sum_{j}\left|a_{i j}\right|^{2}
$$

Notation for tensor product, $x \otimes y=|x\rangle|y\rangle=|x y\rangle$ (more in Lec. 3)

For operators O and T, we have the composition $O T$ defined via $O T|x\rangle=O(T(|x\rangle))$
The Hilbert-Schmidt inner product (O, T) between operators O and T is obtained as $(O, T)=\operatorname{Tr}\left(O^{*} T\right)$
The commutator between O and T is $[O, T]=O T-T O$,
if $[O, T]=0$ the operators O and T commute
Similarly, the anti-commutator is $\{O, T\}=O T+T O$,
if $\{O, T\}=0$ the operators O and T anti-commute

The Postulates of Hilbert Space Quantum Mechanics

Postulate 1: The state of any isolated quantum system is fully characterized by a state vector $|\psi\rangle$ in a Hilbert space \mathcal{H}, the state space
$\left|\psi_{1}\right\rangle$ and $\left|\psi_{2}\right\rangle$ in \mathcal{H} are considered to represent the same quantum mechanical state if $\left|\psi_{2}\right\rangle=\alpha\left|\psi_{1}\right\rangle$ for some $\alpha \in \mathbb{C}$. We will implicitly assume that $\||\psi\rangle \|=1$ always

Postulate 2: The time-evolution of any closed quantum system is fully described by a unitary linear mapping. That is, if the state is $\left|\psi_{1}\right\rangle$ at time t_{1}, then the state at time t_{2} is $\left|\psi_{2}\right\rangle=U\left|\psi_{1}\right\rangle$ where U is unitary and depends only on $\left(t_{1}, t_{2}\right)$

The evolution of the state $|\psi(t)\rangle$ characterizing a closed quantum system evolving in continuous time is described by the Schrödinger equation

$$
i \hbar \frac{d|\psi(t)\rangle}{d t}=H|\psi(t)\rangle
$$

where \hbar is Planck's constant and where H is a fixed self-adjoint operator known as the Hamiltonian

For continuous-time systems, the validity of the Schrödinger equation can be verified to imply Postulate 2

Postulate 3: An isolated quantum system can interact with the outside world by measurement. Any measurement that can be performed is characterized by a set of linear operators $\left\{M_{n}\right\}$, where the index n refers to different outcomes of the experiment The measurement operators satisfy the completeness condition

$$
\sum_{n} M_{n}^{*} M_{n}=I
$$

where I is the unity operator $(I|x\rangle=|x\rangle$ for any $|x\rangle \in \mathcal{H})$

If an isolated system is in state $|\psi\rangle$ immediately before measurement, then the probability that result n is observed is

$$
p(n)=\langle\psi| E_{n}|\psi\rangle
$$

where $\left\{E_{n}\right\}$ are the POVM elements, $E_{n}=M_{n}^{*} M_{n}$ After observing result n, the new state is $(p(n))^{-1 / 2} M_{n}|\psi\rangle$ The only way to obtain information about the state $|\psi\rangle$ of a quantum system is by measurement. Two states $\left|\psi_{1}\right\rangle$ and $\left|\psi_{2}\right\rangle$ can only be distinguished "with probability one" iff $\left\langle\psi_{1} \mid \psi_{2}\right\rangle=0$

Projective measurements: The special case of a projective measurement is fully characterized by a compact linear self-adjoint operator M, with eigen-decomposition

$$
M=\sum_{i} \lambda_{i} P_{i}
$$

(where P_{i} projects onto $\left\{|x\rangle: M|x\rangle=\lambda_{i}|x\rangle,\langle x \mid x\rangle=1\right\}$)
The possible (real, numerical) outcomes of the measurement are the eigenvalues $\left\{\lambda_{i}\right\}$, occurring with probabilities

$$
p(i)=\langle\psi| P_{i}|\psi\rangle
$$

Similarly, the expected outcome of the measurement is

$$
\langle M\rangle=\sum_{i} p(i) \lambda_{i}=\langle\psi| M|\psi\rangle
$$

Unobservable characterization

The system is in state $|\psi\rangle$. The value of $|\psi\rangle$ can be unknown, or known in the case where the system was prepared in this state (or as $\left|\psi_{0}\right\rangle$ and then evolved to $|\psi\rangle$ according to Schrödinger)

When measured, the state $|\psi\rangle$ collapses to an eigen-state/space of the measurement, $|\psi\rangle \rightarrow P_{i}|\psi\rangle$

There is no way the state can be observed without collapsing

Uncertainty relation [Heisenberg/Robertson]:
For (projective) measurements A and B, let $\Delta A=A-\langle A\rangle I$, $\Delta B=B-\langle B\rangle I$, then for a given state $|\psi\rangle$

$$
\left\langle(\Delta A)^{2}\right\rangle\left\langle(\Delta B)^{2}\right\rangle \geq \frac{1}{4}|\langle[A, B]\rangle|^{2}
$$

where $\left\langle(\Delta A)^{2}\right\rangle=\langle\psi|(\Delta A)^{2}|\psi\rangle,\left\langle(\Delta B)^{2}\right\rangle=\langle\psi|(\Delta B)^{2}|\psi\rangle$ and $\langle[A, B]\rangle=\langle\psi|[A, B]|\psi\rangle$

Qubits

Assume a quantum system is fully described by a two-dimensional space \mathcal{H}. The state $|\psi\rangle \in \mathcal{H}$ is then called a quantum bit or qubit Given a projective measurement M on \mathcal{H} with eigenvalues $\left\{\lambda_{0}, \lambda_{1}\right\}$ and corresponding eigenvectors $|0\rangle$ and $|1\rangle$ we can write any state as

$$
|\psi\rangle=\alpha|0\rangle+\beta|1\rangle
$$

and the measurement as $M=\lambda_{0}|0\rangle\langle 0|+\lambda_{1}|1\rangle\langle 1|$
The outcome of the measurement is either " $|0\rangle$ " with numerical value λ_{0} or " $|1\rangle$ " with value λ_{1}
λ_{0} is measured with probability $\langle\psi \mid 0\rangle\langle 0 \mid \psi\rangle=|\alpha|^{2}$
and λ_{1} with probability $\langle\psi \mid 1\rangle\langle 1 \mid \psi\rangle=|\beta|^{2}$

Bloch sphere representation

$$
|\psi\rangle=\cos \frac{\theta}{2}|0\rangle+e^{i \varphi} \sin \frac{\theta}{2}|1\rangle
$$

