Quantum

Lecture 3

- Tensors
- Composite systems

Tensor Products of Linear Spaces

For linear spaces X, Y and Z over the same field $F(\mathbb{R}$ or $\mathbb{C})$, a mapping $L(x, y)$ from $X \times Y$ to Z is bilinear if

$$
\begin{aligned}
L\left(a_{1} x_{1}+a_{2} x_{2}, y\right) & =a_{1} L\left(x_{1}, y\right)+a_{2} L\left(x_{2}, y\right) \\
L\left(x, b_{1} y_{1}+b_{2} x_{2}\right) & =b_{1} L\left(x, y_{1}\right)+b_{2} L\left(x, y_{2}\right)
\end{aligned}
$$

for all $x_{1}, x_{2}, x \in X, y_{1}, y_{2}, y \in Y$ and scalars $a_{1}, a_{2}, b_{1}, b_{2}$
When $Z=F$ the mapping is a bilinear form
Let $\mathcal{B}(X \times Y)$ denote the set of bilinear forms over $X \times Y$

For $x \in X$ and $y \in Y$ let $x \otimes y$ denote the functional $f: \mathcal{B}(X \times Y) \rightarrow F$ defined as

$$
f(L)=L(x, y)
$$

for each bilinear form L on $X \times Y$
For fixed x and $y, x \otimes y$ is called a simple tensor
The tensor product $X \otimes Y$ of the spaces X and Y is the linear space spanned by the the simple tensors

The members of $X \otimes Y$ are called tensors

Any tensor $u \in X \otimes Y$ can thus be written as

$$
u=\sum_{i} a_{i} x_{i} \otimes y_{i}
$$

for some $a_{i} \in F, x_{i} \in X$ and $y_{i} \in Y$
Interpreting $x \otimes y$ as a 'product' on $X \times Y$ with values in $X \otimes Y$, we can conclude

$$
\begin{aligned}
& \left(x_{1}+x_{2}\right) \otimes y=x_{1} \otimes y+x_{2} \otimes y \\
& x \otimes\left(y_{1}+y_{2}\right)=x \otimes y_{1}+x \otimes y_{2} \\
& a(x \otimes y)=(a x) \otimes y=x \otimes(a y)
\end{aligned}
$$

Since $a_{i}\left(x_{i} \otimes y_{i}\right)=\left(a_{i} x_{i}\right) \otimes\left(y_{i}\right)=x_{i} \otimes\left(a_{i} y_{i}\right)$, each tensor has an equivalent representation

$$
u=\sum_{i} x_{i} \otimes y_{i}
$$

for some (other) $x_{i} \in X$ and $y_{i} \in Y$
If $\left\{a_{i}\right\}$ and $\left\{b_{j}\right\}$ are bases for X and Y, then $\left\{a_{i} \otimes b_{j}\right\}$ is a basis for $X \otimes Y$

If X and Y are finite-dimensional of dimensions d_{1} and d_{2} then $X \otimes Y$ has dimension $d_{1} d_{2}$. Also, for $u \in X \otimes Y$ there is then a smallest $n<\infty$, the rank of u, such that $u=\sum_{i=1}^{n} x_{i} \otimes y_{i}$

For each bilinear form $L: X \times Y \rightarrow F$ there is a unique linear functional $\tilde{L}: X \otimes Y \rightarrow F$ such that $L(x, y)=\tilde{L}(x \otimes y)$

Hence, $x \otimes y$ can be identified as the nonlinear combination of x and y that linearizes the mapping $(x, y) \rightarrow L(x, y)$

Finite (real) dimensions
$X=\mathbb{R}^{n}$ and $Y=\mathbb{R}^{m}$, with elements interpreted as column vectors, inner product $\left\langle x_{1}, x_{2}\right\rangle=x_{1}^{T} x_{2}$, etc., and $Z=\mathbb{R}$ Bilinear forms have the representation $L(x, y)=x^{T} A y$ for some matrix A

If we identify a bilinear L with its matrix representation $A(L)$, then $x \otimes y(L)$ assigns the value $x^{T} A(L) y$
For each bilinear L, there is a unique linear \tilde{L} such that $L(x, y)=x^{T} A y=\tilde{L}(x \otimes y)$
Since $x^{T} A y=\operatorname{Tr}\left(A y x^{T}\right)$, we can identify $x \otimes y$ with the outer vector product $y x^{T}$

We can also identify $x \otimes y$ with the Kronecker (or tensor) matrix product

$$
x \otimes y=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right] \otimes y=\left[\begin{array}{c}
x_{1} y \\
x_{2} y \\
\vdots \\
x_{n} y
\end{array}\right] \in \mathbb{R}^{n m}
$$

between $x \in \mathbb{R}^{n}$ and $y \in \mathbb{R}^{m}$
Then the linear functional \tilde{L} corresponding to $L(x, y)$ has the representation

$$
\tilde{L}(x \otimes y)=a^{T} x \otimes y
$$

for some $a \in \mathbb{R}^{n m}$
The outer and Kronecker product representations are in fact equivalent, since $\operatorname{Tr}\left(A y x^{T}\right)=a^{T} x \otimes y \Longleftrightarrow a=\operatorname{vec} A^{T}$ (column-wise vectorization). Also note that $y x^{T}=y \otimes x^{T}$

Tensor Product of Hilbert Spaces

Consider two Hilbert spaces $\left(\mathcal{H}_{1}, g_{1}\right)$ and $\left(\mathcal{H}_{2}, g_{2}\right)$, over \mathbb{C}
Hilbert spaces are linear spaces, so we have a corresponding tensor product space (as a linear space)

On this space we can define an inner product as

$$
\left\langle x_{1} \otimes y_{1}, x_{2} \otimes y_{2}\right\rangle=g_{1}\left(x_{1}, x_{2}\right) g_{2}\left(y_{1}, y_{2}\right)
$$

for simple tensors $x_{1} \otimes y_{1}$ and $x_{2} \otimes y_{2}$, with obvious extension to linear combinations

The (completion of) this inner product space is a Hilbert space, denoted $\mathcal{H}_{1} \otimes \mathcal{H}_{2}$: the tensor product of \mathcal{H}_{1} and \mathcal{H}_{2}

For linear operators A and B on \mathcal{H}_{1} and \mathcal{H}_{2}, we also define $A \otimes B$ on $\mathcal{H}_{1} \otimes \mathcal{H}_{2}$ via

$$
(A \otimes B)(x \otimes y)=A(x) \otimes B(y)
$$

with obvious extension to linear combinations

Partial trace

For two Hilbert spaces \mathcal{H} and \mathcal{G}, and a fixed $g \in \mathcal{G}$, define $T_{g}: \mathcal{H} \rightarrow \mathcal{H} \otimes \mathcal{G}$ as

$$
T_{g}(h)=h \otimes g
$$

The corresponding adjoint $T_{g}^{*}: \mathcal{H} \otimes \mathcal{G} \rightarrow \mathcal{H}$ is obtained as

$$
T_{g}^{*}(u \otimes v)=\langle g, v\rangle u
$$

(with extension to linear combinations)
If T is a trace-class linear operator on $\mathcal{H} \otimes \mathcal{G}$ then for all $g \in \mathcal{G}$ the operator $S: \mathcal{H} \rightarrow \mathcal{H}$ defined by

$$
S_{g}(x)=T_{g}^{*}\left(T\left(T_{g}(x)\right)\right)
$$

is trace-class on \mathcal{H}

For a trace-class operator T on $\mathcal{H} \otimes \mathcal{G}$, and any orthonormal basis $\left\{g_{i}\right\}$ in \mathcal{G} define

$$
\operatorname{Tr}_{\mathcal{G}}(T)=\sum_{i} S_{g_{i}}
$$

(as an operator from \mathcal{H} to \mathcal{H}). The definition does not depend on the choice of basis
$\operatorname{Tr}_{\mathcal{G}}(T)$ is the partial trace of T w.r.t. \mathcal{G} the space \mathcal{G} has been "traced out"
$\operatorname{Tr}_{\mathcal{G}}(T)$ is the unique trace-class operator on \mathcal{H} such that

$$
\operatorname{Tr}\left(\operatorname{Tr}_{\mathcal{G}}(T) B\right)=\operatorname{Tr}(T(B \otimes I))
$$

for all bounded $B: \mathcal{H} \rightarrow \mathcal{H}$ (and I the identity)

For the special case $T=T_{1} \otimes T_{2}$ we get

$$
\operatorname{Tr}_{\mathcal{G}}(T)(x)=\sum_{i}\left\langle g_{i}, T_{2}\left(g_{i}\right)\right\rangle T_{1}(x)=\operatorname{Tr}\left(T_{2}\right) T_{1}(x)
$$

In general, linear operators on $\mathcal{H}_{1} \otimes \mathcal{H}_{2}$ are of the form

$$
T=\sum_{i j} a_{i j} T_{i}^{(1)} \otimes T_{j}^{(2)}
$$

for $T_{k}^{(i)}: \mathcal{H}_{i} \rightarrow \mathcal{H}_{i}$. The partial trace then has the representation

$$
\operatorname{Tr}_{\mathcal{H}_{1}}(T)=\sum_{i j} a_{i j} \operatorname{Tr}\left(T_{i}^{(1)}\right) T_{j}^{(2)}
$$

In finite dimensions: For \mathcal{H} of dimension m and \mathcal{G} of dimension n, let $\left\{h_{i}\right\}$ be a basis for \mathcal{H} and $\left\{g_{j}\right\}$ one for \mathcal{G}. Let T be a linear mapping from $\mathcal{H} \otimes \mathcal{G}$ to a linear mapping on \mathcal{H}, and let $t_{k \ell, i j}$, $1 \leq k, i \leq m, 1 \leq \ell, j \leq n$, be a matrix representation for T relative to the basis $h_{k} \otimes g_{\ell}$ in $\mathcal{H} \otimes \mathcal{G}$. Define the matrix

$$
s_{k, i}=\sum_{j=1}^{n} a_{k j, i j}
$$

for $1 \leq k, i \leq m \Rightarrow$ the corresponding linear mapping defines the partial trace $\operatorname{Tr}_{\mathcal{G}} T$ of T over \mathcal{G}

In general, with matrices $\left\{H_{i}\right\}(m \times m)$ and $\left\{G_{j}\right\}(n \times n)$, and for $T=\sum_{i j} c_{i j} H_{i} \otimes G_{j}$ we get

$$
\operatorname{Tr}_{\mathcal{G}} T=\sum_{i j} c_{i j} \operatorname{Tr}\left(G_{j}\right) H_{i} \quad(m \times m)
$$

Composite Quantum Systems

Postulate 4: Assume that two different isolated quantum systems have states in \mathcal{H}_{1} and \mathcal{H}_{2} respectively. Then the composite system representing the simultaneous characterization of both systems has states in $\mathcal{H}_{1} \otimes \mathcal{H}_{2}$

Two Qubit Systems

Consider the simultaneous description of two qubit systems, with individual states in \mathcal{H}_{1} and \mathcal{H}_{2} respectively. The composite system is characterized by the 4-dimensional space $\mathcal{H}=\mathcal{H}_{1} \otimes \mathcal{H}_{2}$ If $\left\{|0\rangle_{i},|1\rangle_{i}\right\}$ is a basis for \mathcal{H}_{i} then

$$
|00\rangle=|0\rangle_{1}|0\rangle_{2}, \quad|01\rangle=|0\rangle_{1}|1\rangle_{2}, \quad|10\rangle=|1\rangle_{1}|0\rangle_{2}, \quad|11\rangle=|1\rangle_{1}|1\rangle_{2}
$$

is a basis for \mathcal{H}

Entanglement

In $\mathcal{H}=\mathcal{H}_{1} \otimes \mathcal{H}_{2}$, consider the state

$$
|\psi\rangle=\frac{|00\rangle+|11\rangle}{\sqrt{2}}
$$

This can be verified to be a rank-2 tensor in \mathcal{H}, that is, $|\psi\rangle$ cannot be written as $|a\rangle|b\rangle$ for any $|a\rangle \in \mathcal{H}_{1}$ and $|b\rangle \in \mathcal{H}_{2}$

The rank-2 states $|\psi\rangle$ in \mathcal{H} (rank- $r, r>1$, in general) are called entangled states

