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Tensor Products of Linear Spaces

For linear spaces X, Y and Z over the same field F' (R or C), a
mapping L(z,y) from X x Y to Z is bilinear if

L(CL1$1 + a2$2,y) = alL(xlv y) + a2L($27y)
L(x,b1y1 + baxa) = biL(x,y1) + baL(z, y2)

for all z1,20,x € X, y1,y2,y € Y and scalars a1, as, b1, bo
When Z = F' the mapping is a bilinear form
Let B(X x Y') denote the set of bilinear forms over X x Y
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Forz € X and y € Y let x ® y denote the functional
f:B(X xY)— F defined as

f(L) = L(z,y)
for each bilinear form L on X x Y

For fixed x and y, z ® y is called a simple tensor

The tensor product X ® Y of the spaces X and Y is the linear
space spanned by the the simple tensors

The members of X ® Y are called tensors
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Any tensor u € X ® Y can thus be written as
U = Z a;iTi Q Y;
i
forsomea; € F,r; € X andy; € Y

Interpreting x ® y as a 'product’ on X X Y with values in X ® Y,
we can conclude

(T14+22) Q=21 QY+ 12y
TR tye) =2y +T R Y2
a(z®y) = (ar) @y = = @ (ay)
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Since a;(z; ® y;) = (aiz;) @ (yi) = z; ® (a;y;), each tensor has an
equivalent representation
U = Z Ti Q Y;
i

for some (other) z; € X and y; € Y

If {a;} and {b;} are bases for X and Y, then {a; ® b;} is a basis
for X @Y

If X and Y are finite-dimensional of dimensions d; and ds then
X ®Y has dimension dids. Also, for u € X ® Y there is then a
smallest n < oo, the rank of u, such that u =", z; ® y;
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For each bilinear foom L : X XY — F thereis a unique linear
functional L : X ® Y — F such that L(z,y) = L(z ® y)

Hence, x ® y can be identified as the nonlinear combination of x
and y that linearizes the mapping (z,y) — L(x,y)
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Finite (real) dimensions

X =R"and Y = R"™, with elements interpreted as column
vectors, inner product (x1,x2) = x{xg, etc., and Z =R
Bilinear forms have the representation L(z,y) = 2T Ay for some
matrix A

If we identify a bilinear L with its matrix representation A(L), then
x ®y(L) assigns the value z7 A(L)y

For each bilinear L, there is a unique linear L such that

L(z,y) = 2" Ay = L(z ®y)

Since 7 Ay = Tr(AyzT), we can identify z ® y with the outer
vector product yaT
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We can also identify  ® y with the Kronecker (or tensor) matrix
product

T 1y

X2 €2y
TRyY=|.|®y= _ c R

Tn TnlY

between x € R™ and y € R™

Then the linear functional L corresponding to L(z,y) has the
representation

Lz®y) =dzey

for some a € R™™

The outer and Kronecker product representations are in fact
equivalent, since Tr(Ayz”) =a’z®y <= a = vecAT
(column-wise vectorization). Also note that yz? =y ® 27
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Tensor Product of Hilbert Spaces

Consider two Hilbert spaces (H1, g1) and (#Ha, g2), over C

Hilbert spaces are linear spaces, so we have a corresponding tensor
product space (as a linear space)

On this space we can define an inner product as

(1 @ y1,22 @ Yy2) = g1(x1,22)92(y1, Y2)

for simple tensors 1 ® y1 and x2 ® yo, with obvious extension to
linear combinations
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The (completion of) this inner product space is a Hilbert space,
denoted H1 ® Hsa: the tensor product of H; and Hso

For linear operators A and B on H; and Ho, we also define A ® B
on Hi ® Ha via

(A B)(z®y) = A(z) ® B(y)

with obvious extension to linear combinations
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Partial trace

For two Hilbert spaces H and G, and a fixed g € G, define
Ty:H—-+H®G as
Tg(h) =h®g

The corresponding adjoint 7/ : H ® G — H is obtained as

T, (u®v) = (g,v)u

(with extension to linear combinations)

If T is a trace-class linear operator on H ® G then for all g € G the
operator S : H — H defined by

is trace-class on H
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For a trace-class operator 7" on ‘H ® G, and any orthonormal basis
{gi} in G define
Tl“g(T) - Z S, i
i

(as an operator from H to #H). The definition does not depend on
the choice of basis

Trg(T) is the partial trace of T w.r.t. G
the space G has been “traced out”

Trg(T') is the unique trace-class operator on H such that
Tr(Trg(T)B) = Te(T(B® 1))

for all bounded B : H — H (and I the identity)
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For the special case T'=T] ® Ty we get

Trg(T)(z) = Y _(9i, To(9:))T1(x) = Tr(T2) T (x)

%

In general, linear operators on H1 ® Hs are of the form

T = Z ai TV @ T\

for T,ii) : H; — H;. The partial trace then has the representation

Try, (T) = > ay Te(T)) T

ij
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In finite dimensions: For H of dimension m and G of dimension n,
let {h;} be a basis for 7 and {g;} one for G. Let T' be a linear
mapping from H ® G to a linear mapping on H, and let ty ;;,
1<k, i<m,1</{,j<n, bea matrix representation for T’
relative to the basis hy ® gy in H ® G. Define the matrix

n
Ski = D Ahjij
j=1

for 1 < k,i < m = the corresponding linear mapping defines the
partial trace Trg7 of T over G

In general, with matrices {H;} (m x m) and {G;} (n x n), and for
T = sz cijH; ® G we get

TrgT = ZcijTr(Gj)Hi (m x m)

ij
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Composite Quantum Systems

Postulate 4: Assume that two different isolated quantum systems
have states in 1 and Hso respectively. Then the composite system
representing the simultaneous characterization of both systems has
states in H1 @ Ha
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Two Qubit Systems

Consider the simultaneous description of two qubit systems, with
individual states in H; and s respectively. The composite system
is characterized by the 4-dimensional space H = H1 ® Ho

If {|0):,|1);} is a basis for H; then
00) = [0)1[0)2, [01) = |0)1[1)2, [10) = [1)1]0)2, [11) = [1)1[1)2

is a basis for H
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Entanglement

In H = H1 ® Ho, consider the state

00y +[11)

This can be verified to be a rank-2 tensor in H, that is, i) cannot
be written as |a)|b) for any |a) € H1 and |b) € Ho

The rank-2 states |¢) in H (rank-r, 7 > 1, in general) are called
entangled states
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