
Quantum
Lecture 3

• Tensors

• Composite systems
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Tensor Products of Linear Spaces

For linear spaces X, Y and Z over the same field F (R or C), a
mapping L(x, y) from X × Y to Z is bilinear if

L(a1x1 + a2x2, y) = a1L(x1, y) + a2L(x2, y)

L(x, b1y1 + b2x2) = b1L(x, y1) + b2L(x, y2)

for all x1, x2, x ∈ X, y1, y2, y ∈ Y and scalars a1, a2, b1, b2

When Z = F the mapping is a bilinear form

Let B(X × Y ) denote the set of bilinear forms over X × Y
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For x ∈ X and y ∈ Y let x⊗ y denote the functional
f : B(X × Y )→ F defined as

f(L) = L(x, y)

for each bilinear form L on X × Y

For fixed x and y, x⊗ y is called a simple tensor

The tensor product X ⊗ Y of the spaces X and Y is the linear
space spanned by the the simple tensors

The members of X ⊗ Y are called tensors
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Any tensor u ∈ X ⊗ Y can thus be written as

u =
∑
i

aixi ⊗ yi

for some ai ∈ F , xi ∈ X and yi ∈ Y

Interpreting x⊗ y as a ’product’ on X × Y with values in X ⊗ Y ,
we can conclude

(x1 + x2)⊗ y = x1 ⊗ y + x2 ⊗ y
x⊗ (y1 + y2) = x⊗ y1 + x⊗ y2
a(x⊗ y) = (ax)⊗ y = x⊗ (ay)
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Since ai(xi ⊗ yi) = (aixi)⊗ (yi) = xi ⊗ (aiyi), each tensor has an
equivalent representation

u =
∑
i

xi ⊗ yi

for some (other) xi ∈ X and yi ∈ Y

If {ai} and {bj} are bases for X and Y , then {ai ⊗ bj} is a basis
for X ⊗ Y

If X and Y are finite-dimensional of dimensions d1 and d2 then
X ⊗ Y has dimension d1d2. Also, for u ∈ X ⊗ Y there is then a
smallest n <∞, the rank of u, such that u =

∑n
i=1 xi ⊗ yi
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For each bilinear form L : X × Y → F there is a unique linear
functional L̃ : X ⊗ Y → F such that L(x, y) = L̃(x⊗ y)

Hence, x⊗ y can be identified as the nonlinear combination of x
and y that linearizes the mapping (x, y)→ L(x, y)
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Finite (real) dimensions

X = Rn and Y = Rm, with elements interpreted as column
vectors, inner product 〈x1, x2〉 = xT1 x2, etc., and Z = R

Bilinear forms have the representation L(x, y) = xTAy for some
matrix A

If we identify a bilinear L with its matrix representation A(L), then
x⊗ y(L) assigns the value xTA(L)y

For each bilinear L, there is a unique linear L̃ such that
L(x, y) = xTAy = L̃(x⊗ y)
Since xTAy = Tr(AyxT ), we can identify x⊗ y with the outer
vector product yxT
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We can also identify x⊗ y with the Kronecker (or tensor) matrix
product

x⊗ y =


x1
x2
...
xn

⊗ y =


x1y
x2y

...
xny

 ∈ Rnm

between x ∈ Rn and y ∈ Rm

Then the linear functional L̃ corresponding to L(x, y) has the
representation

L̃(x⊗ y) = aTx⊗ y

for some a ∈ Rnm

The outer and Kronecker product representations are in fact
equivalent, since Tr(AyxT ) = aTx⊗ y ⇐⇒ a = vecAT

(column-wise vectorization). Also note that yxT = y ⊗ xT
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Tensor Product of Hilbert Spaces

Consider two Hilbert spaces (H1, g1) and (H2, g2), over C

Hilbert spaces are linear spaces, so we have a corresponding tensor
product space (as a linear space)

On this space we can define an inner product as

〈x1 ⊗ y1, x2 ⊗ y2〉 = g1(x1, x2)g2(y1, y2)

for simple tensors x1 ⊗ y1 and x2 ⊗ y2, with obvious extension to
linear combinations
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The (completion of) this inner product space is a Hilbert space,
denoted H1 ⊗H2: the tensor product of H1 and H2

For linear operators A and B on H1 and H2, we also define A⊗B
on H1 ⊗H2 via

(A⊗B)(x⊗ y) = A(x)⊗B(y)

with obvious extension to linear combinations
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Partial trace

For two Hilbert spaces H and G, and a fixed g ∈ G, define
Tg : H → H⊗ G as

Tg(h) = h⊗ g

The corresponding adjoint T ∗g : H⊗ G → H is obtained as

T ∗g (u⊗ v) = 〈g, v〉u

(with extension to linear combinations)

If T is a trace-class linear operator on H⊗G then for all g ∈ G the
operator S : H → H defined by

Sg(x) = T ∗g (T (Tg(x)))

is trace-class on H
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For a trace-class operator T on H⊗ G, and any orthonormal basis
{gi} in G define

TrG(T ) =
∑
i

Sgi

(as an operator from H to H). The definition does not depend on
the choice of basis

TrG(T ) is the partial trace of T w.r.t. G
the space G has been “traced out”

TrG(T ) is the unique trace-class operator on H such that

Tr(TrG(T )B) = Tr(T (B ⊗ I))

for all bounded B : H → H (and I the identity)
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For the special case T = T1 ⊗ T2 we get

TrG(T )(x) =
∑
i

〈gi, T2(gi)〉T1(x) = Tr(T2)T1(x)

In general, linear operators on H1 ⊗H2 are of the form

T =
∑
ij

aijT
(1)
i ⊗ T (2)

j

for T
(i)
k : Hi → Hi. The partial trace then has the representation

TrH1(T ) =
∑
ij

aijTr(T
(1)
i )T

(2)
j
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In finite dimensions: For H of dimension m and G of dimension n,
let {hi} be a basis for H and {gj} one for G. Let T be a linear
mapping from H⊗ G to a linear mapping on H, and let tk`,ij ,
1 ≤ k, i ≤ m, 1 ≤ `, j ≤ n, be a matrix representation for T
relative to the basis hk ⊗ g` in H⊗ G. Define the matrix

sk,i =

n∑
j=1

akj,ij

for 1 ≤ k, i ≤ m ⇒ the corresponding linear mapping defines the
partial trace TrGT of T over G

In general, with matrices {Hi} (m×m) and {Gj} (n× n), and for
T =

∑
ij cijHi ⊗Gj we get

TrGT =
∑
ij

cijTr(Gj)Hi (m×m)
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Composite Quantum Systems

Postulate 4: Assume that two different isolated quantum systems
have states in H1 and H2 respectively. Then the composite system
representing the simultaneous characterization of both systems has
states in H1 ⊗H2
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Two Qubit Systems

Consider the simultaneous description of two qubit systems, with
individual states in H1 and H2 respectively. The composite system
is characterized by the 4-dimensional space H = H1 ⊗H2

If {|0〉i, |1〉i} is a basis for Hi then

|00〉 = |0〉1|0〉2, |01〉 = |0〉1|1〉2, |10〉 = |1〉1|0〉2, |11〉 = |1〉1|1〉2

is a basis for H
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Entanglement

In H = H1 ⊗H2, consider the state

|ψ〉 = |00〉+ |11〉√
2

This can be verified to be a rank-2 tensor in H, that is, |ψ〉 cannot
be written as |a〉|b〉 for any |a〉 ∈ H1 and |b〉 ∈ H2

The rank-2 states |ψ〉 in H (rank-r, r > 1, in general) are called
entangled states
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