Quantum Lecture 3

- Tensors
- Composite systems

Tensor Products of Linear Spaces

For linear spaces X, Y and Z over the same field $F (\mathbb{R} \text{ or } \mathbb{C})$, a mapping L(x, y) from $X \times Y$ to Z is bilinear if

$$L(a_1x_1 + a_2x_2, y) = a_1L(x_1, y) + a_2L(x_2, y)$$

$$L(x, b_1y_1 + b_2x_2) = b_1L(x, y_1) + b_2L(x, y_2)$$

for all $x_1, x_2, x \in X$, $y_1, y_2, y \in Y$ and scalars a_1, a_2, b_1, b_2 When Z = F the mapping is a bilinear form Let $\mathcal{B}(X \times Y)$ denote the set of bilinear forms over $X \times Y$ For $x \in X$ and $y \in Y$ let $x \otimes y$ denote the functional $f : \mathcal{B}(X \times Y) \to F$ defined as

$$f(L) = L(x, y)$$

for each bilinear form L on $X\times Y$

For fixed x and y, $x \otimes y$ is called a simple tensor

The tensor product $X \otimes Y$ of the spaces X and Y is the linear space spanned by the the simple tensors

The members of $X \otimes Y$ are called tensors

Any tensor $u \in X \otimes Y$ can thus be written as

$$u = \sum_{i} a_i x_i \otimes y_i$$

for some $a_i \in F$, $x_i \in X$ and $y_i \in Y$

Interpreting $x\otimes y$ as a 'product' on $X\times Y$ with values in $X\otimes Y,$ we can conclude

$$\begin{aligned} (x_1 + x_2) \otimes y &= x_1 \otimes y + x_2 \otimes y \\ x \otimes (y_1 + y_2) &= x \otimes y_1 + x \otimes y_2 \\ a(x \otimes y) &= (ax) \otimes y = x \otimes (ay) \end{aligned}$$

Since $a_i(x_i \otimes y_i) = (a_i x_i) \otimes (y_i) = x_i \otimes (a_i y_i)$, each tensor has an equivalent representation

$$u = \sum_{i} x_i \otimes y_i$$

for some (other) $x_i \in X$ and $y_i \in Y$

If $\{a_i\}$ and $\{b_j\}$ are bases for X and Y, then $\{a_i \otimes b_j\}$ is a basis for $X \otimes Y$

If X and Y are finite-dimensional of dimensions d_1 and d_2 then $X \otimes Y$ has dimension d_1d_2 . Also, for $u \in X \otimes Y$ there is then a smallest $n < \infty$, the rank of u, such that $u = \sum_{i=1}^n x_i \otimes y_i$

For each bilinear form $L: X \times Y \to F$ there is a unique linear functional $\tilde{L}: X \otimes Y \to F$ such that $L(x, y) = \tilde{L}(x \otimes y)$

Hence, $x\otimes y$ can be identified as the nonlinear combination of x and y that linearizes the mapping $(x,y)\to L(x,y)$

Finite (real) dimensions

 $X = \mathbb{R}^n$ and $Y = \mathbb{R}^m$, with elements interpreted as column vectors, inner product $\langle x_1, x_2 \rangle = x_1^T x_2$, etc., and $Z = \mathbb{R}$

Bilinear forms have the representation $L(\boldsymbol{x},\boldsymbol{y}) = \boldsymbol{x}^T A \boldsymbol{y}$ for some matrix A

If we identify a bilinear L with its matrix representation A(L), then $x\otimes y(L)$ assigns the value $x^TA(L)y$

For each bilinear L , there is a unique linear \tilde{L} such that $L(x,y)=x^TAy=\tilde{L}(x\otimes y)$

Since $x^TAy=\mathrm{Tr}(Ayx^T),$ we can identify $x\otimes y$ with the outer vector product yx^T

We can also identify $x \otimes y$ with the Kronecker (or tensor) matrix product

$$x \otimes y = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \otimes y = \begin{bmatrix} x_1y \\ x_2y \\ \vdots \\ x_ny \end{bmatrix} \in \mathbb{R}^{nm}$$

between $x \in \mathbb{R}^n$ and $y \in \mathbb{R}^m$

Then the linear functional \tilde{L} corresponding to $L(\boldsymbol{x},\boldsymbol{y})$ has the representation

$$\tilde{L}(x\otimes y) = a^T x \otimes y$$

for some $a \in \mathbb{R}^{nm}$

The outer and Kronecker product representations are in fact equivalent, since $\operatorname{Tr}(Ayx^T) = a^Tx \otimes y \iff a = \operatorname{vec} A^T$ (column-wise vectorization). Also note that $yx^T = y \otimes x^T$

Tensor Product of Hilbert Spaces

Consider two Hilbert spaces (\mathcal{H}_1,g_1) and (\mathcal{H}_2,g_2) , over $\mathbb C$

Hilbert spaces are linear spaces, so we have a corresponding tensor product space (as a linear space)

On this space we can define an inner product as

$$\langle x_1 \otimes y_1, x_2 \otimes y_2 \rangle = g_1(x_1, x_2)g_2(y_1, y_2)$$

for simple tensors $x_1 \otimes y_1$ and $x_2 \otimes y_2$, with obvious extension to linear combinations

The (completion of) this inner product space is a Hilbert space, denoted $\mathcal{H}_1 \otimes \mathcal{H}_2$: the tensor product of \mathcal{H}_1 and \mathcal{H}_2

For linear operators A and B on \mathcal{H}_1 and \mathcal{H}_2 , we also define $A \otimes B$ on $\mathcal{H}_1 \otimes \mathcal{H}_2$ via

$$(A \otimes B)(x \otimes y) = A(x) \otimes B(y)$$

with obvious extension to linear combinations

Partial trace

For two Hilbert spaces \mathcal{H} and \mathcal{G} , and a fixed $g \in \mathcal{G}$, define $T_g: \mathcal{H} \to \mathcal{H} \otimes \mathcal{G}$ as

$$T_g(h) = h \otimes g$$

The corresponding adjoint $T_g^*:\mathcal{H}\otimes\mathcal{G}\rightarrow\mathcal{H}$ is obtained as

$$T_g^*(u \otimes v) = \langle g, v \rangle u$$

(with extension to linear combinations)

If T is a trace-class linear operator on $\mathcal{H} \otimes \mathcal{G}$ then for all $g \in \mathcal{G}$ the operator $S : \mathcal{H} \to \mathcal{H}$ defined by

$$S_g(x) = T_g^*(T(T_g(x)))$$

is trace-class on ${\mathcal H}$

Mikael Skoglund, Quantum Info

For a trace-class operator T on $\mathcal{H}\otimes \mathcal{G}$, and any orthonormal basis $\{g_i\}$ in \mathcal{G} define

$$\operatorname{Tr}_{\mathcal{G}}(T) = \sum_{i} S_{g_i}$$

(as an operator from ${\cal H}$ to ${\cal H}). The definition does not depend on the choice of basis$

 $\label{eq:Tr} \mathrm{Tr}_{\mathcal{G}}(T) \text{ is the partial trace of } T \text{ w.r.t. } \mathcal{G} \\ \text{ the space } \mathcal{G} \text{ has been "traced out"}$

 $\operatorname{Tr}_{\mathcal{G}}(T)$ is the unique trace-class operator on $\mathcal H$ such that

 $\operatorname{Tr}(\operatorname{Tr}_{\mathcal{G}}(T)B) = \operatorname{Tr}(T(B \otimes I))$

for all bounded $B : \mathcal{H} \to \mathcal{H}$ (and I the identity)

For the special case $T = T_1 \otimes T_2$ we get

$$\operatorname{Tr}_{\mathcal{G}}(T)(x) = \sum_{i} \langle g_i, T_2(g_i) \rangle T_1(x) = \operatorname{Tr}(T_2) T_1(x)$$

In general, linear operators on $\mathcal{H}_1\otimes\mathcal{H}_2$ are of the form

$$T = \sum_{ij} a_{ij} T_i^{(1)} \otimes T_j^{(2)}$$

for $T_k^{(i)}: \mathcal{H}_i \to \mathcal{H}_i$. The partial trace then has the representation

$$\operatorname{Tr}_{\mathcal{H}_1}(T) = \sum_{ij} a_{ij} \operatorname{Tr}(T_i^{(1)}) T_j^{(2)}$$

Mikael Skoglund, Quantum Info

In finite dimensions: For \mathcal{H} of dimension m and \mathcal{G} of dimension n, let $\{h_i\}$ be a basis for \mathcal{H} and $\{g_j\}$ one for \mathcal{G} . Let T be a linear mapping from $\mathcal{H} \otimes \mathcal{G}$ to a linear mapping on \mathcal{H} , and let $t_{k\ell,ij}$, $1 \leq k, i \leq m, \ 1 \leq \ell, j \leq n$, be a matrix representation for Trelative to the basis $h_k \otimes g_\ell$ in $\mathcal{H} \otimes \mathcal{G}$. Define the matrix

$$s_{k,i} = \sum_{j=1}^{n} a_{kj,ij}$$

for $1 \le k, i \le m \Rightarrow$ the corresponding linear mapping defines the partial trace $\text{Tr}_{\mathcal{G}}T$ of T over \mathcal{G}

In general, with matrices $\{H_i\}$ $(m \times m)$ and $\{G_j\}$ $(n \times n)$, and for $T = \sum_{ij} c_{ij}H_i \otimes G_j$ we get

$$\operatorname{Tr}_{\mathcal{G}}T = \sum_{ij} c_{ij} \operatorname{Tr}(G_j) H_i \quad (m \times m)$$

Composite Quantum Systems

Postulate 4: Assume that two different isolated quantum systems have states in \mathcal{H}_1 and \mathcal{H}_2 respectively. Then the composite system representing the simultaneous characterization of both systems has states in $\mathcal{H}_1 \otimes \mathcal{H}_2$

Consider the simultaneous description of two qubit systems, with individual states in \mathcal{H}_1 and \mathcal{H}_2 respectively. The composite system is characterized by the 4-dimensional space $\mathcal{H} = \mathcal{H}_1 \otimes \mathcal{H}_2$

If $\{|0\rangle_i, |1\rangle_i\}$ is a basis for \mathcal{H}_i then

 $|00\rangle = |0\rangle_1|0\rangle_2, \ |01\rangle = |0\rangle_1|1\rangle_2, \ |10\rangle = |1\rangle_1|0\rangle_2, \ |11\rangle = |1\rangle_1|1\rangle_2$

is a basis for ${\mathcal H}$

Entanglement

In $\mathcal{H} = \mathcal{H}_1 \otimes \mathcal{H}_2$, consider the state

$$|\psi\rangle = \frac{|00\rangle + |11\rangle}{\sqrt{2}}$$

This can be verified to be a rank-2 tensor in \mathcal{H} , that is, $|\psi\rangle$ cannot be written as $|a\rangle|b\rangle$ for any $|a\rangle \in \mathcal{H}_1$ and $|b\rangle \in \mathcal{H}_2$

The rank-2 states $|\psi\rangle$ in ${\cal H}$ (rank- $r,\ r>1,$ in general) are called entangled states