Quantum Lecture 5

• Noisy systems

• Quantum operations

Mikael Skoglund, Quantum Info

Noisy Systems

So far: Isolated/closed/noiseless quantum systems

Noiseless dynamics: If the state is $|\psi_1\rangle$ at time t_1 , then the state at time t_2 is $|\psi_2\rangle = U|\psi_1\rangle$ where U is unitary

Open/noisy system: Noise = part of system we cannot control = environment \Rightarrow noisy dynamics, $\rho \rightarrow V(\rho)$

Quantum channel from ρ to $V(\rho)$

More on the partial trace

Consider two Hilbert spaces \mathcal{A} and \mathcal{B} and an operator T on $\mathcal{A} \otimes \mathcal{B}$ Let $\{|e_k\rangle\}$ be a basis for \mathcal{B} and I an identity operator on \mathcal{A} . Then for $|x\rangle \in \mathcal{A}$, we have

$$\operatorname{Tr}_{\mathcal{B}}(T)(|x\rangle) = \sum_{k} (I \otimes \langle e_{k}|) T(|x\rangle \otimes |e_{k}\rangle)$$

That is, with some abuse of notation we can write

$$\operatorname{Tr}_{\mathcal{B}}(T) = \sum_{k} \langle e_k | T | e_k \rangle$$

where it is understood that $\langle e_k |$ and $|e_k \rangle$ affect only space \mathcal{B} , that is $\langle e_k | = I \otimes \langle e_k |$ and $|e_k \rangle$ "=" $I \otimes |e_k \rangle$

In finite dimensions (I a matrix, $|e\rangle$ a vector) the "=" makes perfect sense. However, we will use this approach as short-hand also in the general case.

Mikael Skoglund, Quantum Info

For the quantum channel
$$V(\rho) = \text{Tr}_{env}U(\rho \otimes \rho_{env})U^*$$
, let $\{|e_k\rangle\}$
be a basis for the environment and assume $\rho_{env} = |e_0\rangle\langle e_0|$. We get

$$\operatorname{Tr}_{\mathsf{env}}(U(\rho \otimes |e_0\rangle \langle e_0|)U^*) = \sum_n \langle e_n | U(\rho \otimes |e_0\rangle \langle e_0|)U^* | e_n \rangle$$
$$= \sum_n (I \otimes \langle e_n | UI \otimes |e_0\rangle)(\rho \otimes I)(I \otimes \langle e_n | UI \otimes |e_0\rangle)^*$$
$$= \sum_n E_n(\rho \otimes I)E_n^*$$

with $E_n = (I \otimes \langle e_n |) U(I \otimes |e_0 \rangle) = \langle e_n | U | e_0 \rangle$

System in state ρ . Measure the environment in the basis $\{|e_n\rangle\}$, assume the outcome is $k \Rightarrow$ the principal system is now in state

$$\rho_k = \frac{E_k \rho E_k^*}{\operatorname{Tr}(E_k \rho E_k^*)}$$

with probability $Tr(E_k \rho E_k^*)$. That is

$$P(\rho_k|\rho) = \operatorname{Tr}(E_k \rho E_k^*)$$

C.f. noisy transmission over a channel $P(\cdot|\cdot)$

$$\rho_{\rm env} \to |e_k\rangle \langle e_k | \rho_{\rm env} (|e_k\rangle \langle e_k |)^*$$

$$\rho \longrightarrow P(\rho_k | \rho) \xrightarrow{\rho_k}$$

Mikael Skoglund, Quantum Info

Measurement on the noisy system: Principal system in Q and environment in \mathcal{R} . Initial states $\rho \in Q$ and $\sigma \in \mathcal{R} \Rightarrow$ joint state $\rho \otimes \sigma \in Q \otimes \mathcal{R}$. Combined noisy dynamics $U(\rho \otimes \sigma)U^*$

Measurement on the combined system $\{M_k\}$, outcome $m \Rightarrow$ state in Q after dynamic evolution and measurement,

$$\frac{\operatorname{Tr}_{\mathcal{R}}(M_m U(\rho \otimes \sigma) U^* M_m^*)}{\operatorname{Tr}(M_m U(\rho \otimes \sigma) U^* M_m^*)}$$

Letting $\mathcal{E}_m(\rho) = \operatorname{Tr}_{\mathcal{R}}(M_m U(\rho \otimes \sigma) U^* M_m^*)$, the combined noisy dynamics + measurement maps ρ to $\mathcal{E}_m(\rho)/\operatorname{Tr}\mathcal{E}_m(\rho)$ with probability $\operatorname{Tr}\mathcal{E}_m(\rho)$

If $\sigma = \sum_i q_i |s_i\rangle \langle s_i|$ and $\{|e_\ell\rangle\}$ is a basis for $\mathcal Q$, then

$$\mathcal{E}_m(\rho) = \sum_{k\ell} E_{k\ell} \rho E_{k\ell}^*$$

with $E_{k\ell} = \sqrt{q_k} \langle e_\ell | M_m U | s_k \rangle$

Trace preserving mappings are deterministic only in the quantum sense, we are dealing with density operators so there is still $(\rho = \sum_{i} p_i |\psi_i\rangle \langle \psi_i |)$ classical uncertainty/probabilities

 $\operatorname{Tr} \mathcal{E} < 1 = \mathsf{trace preserving} + \mathsf{generalized measurement}$

The case $\operatorname{Tr} \mathcal{E} < 1$ is allowed, with interpretation that \mathcal{E} does not provide a complete description, there are other possible outcomes

In general, we will however assume that quantum operations are

trace preserving, i.e. $\operatorname{Tr}\mathcal{E}(\rho) = 1$, if not stated otherwise

General definition: (Noisy) quantum operation

 $\mathcal{E}(\rho)$ is a mapping from density operators ρ on \mathcal{A} to (unnormalized) density operators $\mathcal{E}(\rho)$ on \mathcal{B} , representing a random transformation

 $\mathcal{E}(\cdot)$ is completely positive:

 $\mathcal{E}(\rho)$ on \mathcal{B} is a positive operator for any ρ

for the identity map I on a third system \mathcal{Q}_{i} $(I \otimes \mathcal{E})(O)$ is positive for any positive O on $\mathcal{Q} \otimes \mathcal{A}$ For $\sum_i p_i = 1$ and a set $\{\rho_i\}$ of densities, $\mathcal{E}(\sum_i p_i \rho_i) = \sum_i p_i \mathcal{E}(\rho_i)$ Given ρ , the event represented by \mathcal{E} occurs with probability $\mathrm{Tr}\mathcal{E}(\rho)$, and $\mathcal{E}(\rho)/\mathrm{Tr}\mathcal{E}(\rho)$ is the resulting density on \mathcal{B}

Mikael Skoglund, Quantum Info

7/13

 \iff "measurements"

 $\operatorname{Tr} \mathcal{E} = 1 \iff \operatorname{deterministic}$

A general $\mathcal{E}(\rho)$ always has the operator-sum representation

$$\mathcal{E}(\rho) = \sum_{i} E_i \rho E_i^*$$

where $\sum_{i} E_{i}^{*} E_{i} \leq I$ (i.e., $\langle x | (I - \sum_{i} E_{i}^{*} E_{i}) | x \rangle \geq 0$ for all $|x \rangle$) = I when trace preserving (as assumed in general)

Here $\{E_i\}$ are the operation elements, or Kraus operators, for \mathcal{E} If the input space \mathcal{A} is of finite dimension d, then the sum contains at most d^2 elements

Mikael Skoglund, Quantum Info

Standard Operations on Qubits

Assume both the input and output spaces are qubits $\psi = \alpha |0\rangle + \beta |1\rangle$, $\rho = |\psi\rangle\langle\psi|$

bit flip:

phase flip:

$$E_0 = \sqrt{p} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad E_1 = \sqrt{1-p} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

bit-phase flip:

$$E_0 = \sqrt{p} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad E_1 = \sqrt{1-p} \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$$

Mikael Skoglund, Quantum Info

depolarizing:

$$\mathcal{E}(\rho) = \frac{p}{2}I + (1-p)\rho$$

All operations on qubits can written in terms of the Pauli matrices

$$\sigma_0 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \ \sigma_x = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \ \sigma_y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}, \ \sigma_z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

For depolarization, we can use

$$\frac{I}{2} = \frac{1}{4}(\sigma_0\rho\sigma_0 + \sigma_x\rho\sigma_x + \sigma_y\rho\sigma_y + \sigma_z\rho\sigma_z)$$

Quantum Communication

Mikael Skoglund, Quantum Info