Quantum

Lecture 5

- Noisy systems
- Quantum operations

Noisy Systems

So far: Isolated/closed/noiseless quantum systems
Noiseless dynamics: If the state is $\left|\psi_{1}\right\rangle$ at time t_{1}, then the state at time t_{2} is $\left|\psi_{2}\right\rangle=U\left|\psi_{1}\right\rangle$ where U is unitary

Open/noisy system: Noise $=$ part of system we cannot control $=$ environment \Rightarrow noisy dynamics, $\rho \rightarrow V(\rho)$

Quantum channel from ρ to $V(\rho)$

More on the partial trace
Consider two Hilbert spaces \mathcal{A} and \mathcal{B} and an operator T on $\mathcal{A} \otimes \mathcal{B}$ Let $\left\{\left|e_{k}\right\rangle\right\}$ be a basis for \mathcal{B} and I an identity operator on \mathcal{A}. Then for $|x\rangle \in \mathcal{A}$, we have

$$
\operatorname{Tr}_{\mathcal{B}}(T)(|x\rangle)=\sum_{k}\left(I \otimes\left\langle e_{k}\right|\right) T\left(|x\rangle \otimes\left|e_{k}\right\rangle\right)
$$

That is, with some abuse of notation we can write

$$
\operatorname{Tr}_{\mathcal{B}}(T)=\sum_{k}\left\langle e_{k}\right| T\left|e_{k}\right\rangle
$$

where it is understood that $\left\langle e_{k}\right|$ and $\left|e_{k}\right\rangle$ affect only space \mathcal{B}, that is $\left\langle e_{k}\right|=I \otimes\left\langle e_{k}\right|$ and $\left|e_{k}\right\rangle$ " $=$ " $I \otimes\left|e_{k}\right\rangle$

In finite dimensions (I a matrix, $|e\rangle$ a vector) the " $=$ " makes perfect sense. However, we will use this approach as short-hand also in the general case.

For the quantum channel $V(\rho)=\operatorname{Tr}_{\text {env }} U\left(\rho \otimes \rho_{\text {env }}\right) U^{*}$, let $\left\{\left|e_{k}\right\rangle\right\}$ be a basis for the environment and assume $\rho_{\text {env }}=\left|e_{0}\right\rangle\left\langle e_{0}\right|$. We get

$$
\begin{aligned}
\operatorname{Tr}_{\mathrm{env}} & \left(U\left(\rho \otimes\left|e_{0}\right\rangle\left\langle e_{0}\right|\right) U^{*}\right) \\
& =\sum_{n}\left\langle e_{n}\right| U\left(\rho \otimes\left|e_{0}\right\rangle\left\langle e_{0}\right|\right) U^{*}\left|e_{n}\right\rangle \\
& =\sum_{n}\left(I \otimes\left\langle e_{n}\right| U I \otimes\left|e_{0}\right\rangle\right)(\rho \otimes I)\left(I \otimes\left\langle e_{n}\right| U I \otimes\left|e_{0}\right\rangle\right)^{*} \\
& =\sum_{n} E_{n}(\rho \otimes I) E_{n}^{*}
\end{aligned}
$$

with $E_{n}=\left(I \otimes\left\langle e_{n}\right|\right) U\left(I \otimes\left|e_{0}\right\rangle\right)=\left\langle e_{n}\right| U\left|e_{0}\right\rangle$

System in state ρ. Measure the environment in the basis $\left\{\left|e_{n}\right\rangle\right\}$, assume the outcome is $k \Rightarrow$ the principal system is now in state

$$
\rho_{k}=\frac{E_{k} \rho E_{k}^{*}}{\operatorname{Tr}\left(E_{k} \rho E_{k}^{*}\right)}
$$

with probability $\operatorname{Tr}\left(E_{k} \rho E_{k}^{*}\right)$. That is

$$
P\left(\rho_{k} \mid \rho\right)=\operatorname{Tr}\left(E_{k} \rho E_{k}^{*}\right)
$$

C.f. noisy transmission over a channel $P(\cdot \mid \cdot)$

Measurement on the noisy system: Principal system in \mathcal{Q} and environment in \mathcal{R}. Initial states $\rho \in \mathcal{Q}$ and $\sigma \in \mathcal{R} \Rightarrow$ joint state $\rho \otimes \sigma \in \mathcal{Q} \otimes \mathcal{R}$. Combined noisy dynamics $U(\rho \otimes \sigma) U^{*}$
Measurement on the combined system $\left\{M_{k}\right\}$, outcome $m \Rightarrow$ state in \mathcal{Q} after dynamic evolution and measurement,

$$
\frac{\operatorname{Tr}_{\mathcal{R}}\left(M_{m} U(\rho \otimes \sigma) U^{*} M_{m}^{*}\right)}{\operatorname{Tr}\left(M_{m} U(\rho \otimes \sigma) U^{*} M_{m}^{*}\right)}
$$

Letting $\mathcal{E}_{m}(\rho)=\operatorname{Tr}_{\mathcal{R}}\left(M_{m} U(\rho \otimes \sigma) U^{*} M_{m}^{*}\right)$, the combined noisy dynamics + measurement maps ρ to $\mathcal{E}_{m}(\rho) / \operatorname{Tr} \mathcal{E}_{m}(\rho)$ with probability $\operatorname{Tr} \mathcal{E}_{m}(\rho)$
If $\sigma=\sum_{i} q_{i}\left|s_{i}\right\rangle\left\langle s_{i}\right|$ and $\left\{\left|e_{\ell}\right\rangle\right\}$ is a basis for \mathcal{Q}, then

$$
\mathcal{E}_{m}(\rho)=\sum_{k \ell} E_{k \ell} \rho E_{k \ell}^{*}
$$

with $E_{k \ell}=\sqrt{q_{k}}\left\langle e_{\ell}\right| M_{m} U\left|s_{k}\right\rangle$

General definition: (Noisy) quantum operation
$\mathcal{E}(\rho)$ is a mapping from density operators ρ on \mathcal{A} to (unnormalized) density operators $\mathcal{E}(\rho)$ on \mathcal{B}, representing a random transformation $\mathcal{E}(\cdot)$ is completely positive:
$\mathcal{E}(\rho)$ on \mathcal{B} is a positive operator for any ρ for the identity map I on a third system \mathcal{Q},
$(I \otimes \mathcal{E})(O)$ is positive for any positive O on $\mathcal{Q} \otimes \mathcal{A}$ For $\sum_{i} p_{i}=1$ and a set $\left\{\rho_{i}\right\}$ of densities, $\mathcal{E}\left(\sum_{i} p_{i} \rho_{i}\right)=\sum_{i} p_{i} \mathcal{E}\left(\rho_{i}\right)$ Given ρ, the event represented by \mathcal{E} occurs with probability $\operatorname{Tr} \mathcal{E}(\rho)$, and $\mathcal{E}(\rho) / \operatorname{Tr} \mathcal{E}(\rho)$ is the resulting density on \mathcal{B}

The case $\operatorname{Tr} \mathcal{E}<1$ is allowed, with interpretation that \mathcal{E} does not provide a complete description, there are other possible outcomes \Longleftrightarrow "measurements"

In general, we will however assume that quantum operations are trace preserving, i.e. $\operatorname{Tr} \mathcal{E}(\rho)=1$, if not stated otherwise

$$
\operatorname{Tr} \mathcal{E}=1 \Longleftrightarrow \text { deterministic }
$$

$\operatorname{Tr} \mathcal{E}<1=$ trace preserving + generalized measurement
Trace preserving mappings are deterministic only in the quantum sense, we are dealing with density operators so there is still classical uncertainty/probabilities

$$
\left(\rho=\sum_{i} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|\right)
$$

A general $\mathcal{E}(\rho)$ always has the operator-sum representation

$$
\mathcal{E}(\rho)=\sum_{i} E_{i} \rho E_{i}^{*}
$$

where $\sum_{i} E_{i}^{*} E_{i} \leq I \quad$ (i.e., $\langle x|\left(I-\sum_{i} E_{i}^{*} E_{i}\right)|x\rangle \geq 0$ for all $|x\rangle$)
$=I$ when trace preserving (as assumed in general)
Here $\left\{E_{i}\right\}$ are the operation elements, or Kraus operators, for \mathcal{E}
If the input space \mathcal{A} is of finite dimension d, then the sum contains at most d^{2} elements

Standard Operations on Qubits

Assume both the input and output spaces are qubits

$$
\psi=\alpha|0\rangle+\beta|1\rangle, \quad \rho=|\psi\rangle\langle\psi|
$$

bit flip:

$$
E_{0}=\sqrt{p}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad E_{1}=\sqrt{1-p}\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

phase flip:

$$
E_{0}=\sqrt{p}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad E_{1}=\sqrt{1-p}\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

bit-phase flip:

$$
E_{0}=\sqrt{p}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad E_{1}=\sqrt{1-p}\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right]
$$

depolarizing:

$$
\mathcal{E}(\rho)=\frac{p}{2} I+(1-p) \rho
$$

All operations on qubits can written in terms of the Pauli matrices

$$
\sigma_{0}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad \sigma_{x}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], \quad \sigma_{y}=\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right], \quad \sigma_{z}=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

For depolarization, we can use

$$
\frac{I}{2}=\frac{1}{4}\left(\sigma_{0} \rho \sigma_{0}+\sigma_{x} \rho \sigma_{x}+\sigma_{y} \rho \sigma_{y}+\sigma_{z} \rho \sigma_{z}\right)
$$

Quantum Communication

information \longrightarrow preparation $\rho \xrightarrow{\rho}$| noisy operation |
| :--- |
| (channel) | $\mathcal{E}(\rho) \longrightarrow$ measurement $\xrightarrow{\text { information }}$

