Quantum

Lecture 6

e Shannon information
e Quantum information

e Distance measures
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Shannon Entropy and Information

The Shannon entropy for a discrete variable X with alphabet X
and pmf p(z) = Pr(X = x)

— > p(x)logp(x

reX

average amount of uncertainty removed when observing the value
of X = information gained when observing X

It holds that
0 < H(X) < log|X]|

= 0 only if p(x) =1 for some x
= log |X| only if p(x) = 1/]|X|
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Join entropy of X e X and Y € Y, p(x,y) = Pr(X =

HX,)Y)=- Y pla,y)logp(z,y)
reEX ye)

Conditional entropy of Y given X =«

H(Y|X =2)=-) p(ylz)logp(ylz)
yey

Conditional entropy of Y given X

H(Y|X) =) p)H(Y|X =)
TEX

Chain rule
HX,)Y)=HY|X)+ H(X)
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Relative entropy between the pmf’s p(-) and ¢(-)

33
D(pllg) = > p(z)log 25 (@)
reX
D(pllg) > 0 with = 0 only if p(x) = q(=)

Mutual information

I(X;Y) = D(p(z,y)llp(z)p (y))

3/16

information about X obtained when observing Y (and vice versa)

I(X;Y) > 0 with =0 only if p(z,y) = p(z)p(y)
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Data processing inequality

XY Z = I(X;2)<IX;Y)

In particular,
I(X; f(Y)) < I(X3Y)

= no clever manipulation of the data can extract additional
information that is not already present in the data itself
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Quantum Entropy and Information

An ensemble {p;, [¢;)}, and with p = >~ p;|v;) (¢4

The quantum or Von Neumann entropy of p
S(p) = —Tr(plogp) = Z)\ log A

where {)\;} are the eigenvalues of p

S(p) > 0 with = 0 only if p is a pure state (p; = 1 for some 7)

In a d-dimensional space (d < o)
S(p) <d
with = d only if {|¢;)} is an orthonormal set of size d and all p;'s

are equal, i.e. a p is a completely mixed state
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The (quantum) relative entropy between two states p and o

S(pllo) = Tr(plog p) — Tr(plog o)
S(pllc) > 0with=0onlyif p=o0¢

For the composition of two systems A and B and a state
pAP € A® B, the joint entropy is S(p?P)

In the special case pAf = p® o, we get
S(p"P) = S(p) + S(0)

cf. HX,Y)=H(X)+ H(Y) iff X and Y independent
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In general, let p4 = Trep?? and pg = Tr4pAB

Conditional entropy

S(palps) = S(p™?) — S(pp)

and mutual information
S(pa;pp) = S(pa) + S(ps) — S(p*P)

While H(X|Y) > 0, we have:
S(pglpa) < 0 if (and only if) pA is entangled (has rank > 1)

It also holds that

S(p*P) < S(pa) + S(ps)

with = only if pA8 = p4 ® pp. Furthermore

S(p*P) > [S(pa) — S(ps)|
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For three systems A, B, C, we have

S(p”°)
S(p”°)

S(pa) + S(pB)

(p9)
S(p*PC) + S(pp) AB

<S5 +
< S(p™7) +
(where pAB = TrcpABY, etc))
Implications,

conditioning reduces entropy, S(pa|p?¢) < S(palpB)

adding a system increases information, S(pa;p5) < S(pa; pP%)
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Quantum data processing inequality
For a composite system A ® B, if £ is a trace-preserving quantum
operation on B, mapping pf to 047, then

S(pa;pp) > S(oa;0B)

Tracing out subsystems decreases relative entropy

S(pto?) < S(p"P|oF)
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Consider a discrete rv X € X with pmf p(zx), and let {|e(x))} be a
basis for the |X'|-dimensional Hilbert space H. Then we can
“embed” the classical variable X in the quantum system H as

> p(@)le(z))(e(@)]

reX

Given a collection of |X| quantum states o(z), we can also define
the mixed classical-quantum state

> p(a)le(x)){e(z)| @ o(x)

reX

The joint (quantum) entropy of this classical-quantum state is

H(X)+ Y p(x)S(o(x))

reX
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Classical Distance Measures

Two classical pmf's, p(x) and g(x) for a variable x € X

L distance,

Ip(z) — q(@)[| = ) [p(x) — ql),

rzeX

For AC X, let p(A) =>4 p(x) (and similarly for g), then

max(p(4) — 4(4)) = 5 p(a) — a(a)]| = V(p.0)

the variational distance
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Pinsker’'s inequality

1
D > lp—
(pllg) > 21n2||p qll

For a discrete or continuous variable X, let M(s) = Elexp(sX)],
then for all s > 0 we have the Chernoff bound

Pr(X >a) <e **M(s)

According to the Neyman—Pearson lemma, the optimal test
between two (discrete) distributions p and ¢ is of the form

decide p if ln@ >«
q(x)
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Thus,
Pr(decide p|q is true) = Pr <1HM > oz’q) < e OF {(2_7) |q]
q(z) q

With a = 0, and choosing s = 1/2
Pr(decide p|q is true) = Pr(decide g|p is true) < F(p, q)
where (assuming discrete variables)

F(p,q) =) V/p(x)q(x)

is the fidelity of (p, q)

The entity — In F'(p, q) is called the Bhattacharyya distance
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Distance Between Quantum States

The trace distance between p and o

1
Vip,0) = 5 Trlp o]

The fidelity of p and o

F(p,0) = Try\/pt/2ap'/2
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If £ is trace-preserving, then

and

It always holds that

1 —/Flp,0) <V(p,0) < /1 (F(p,0))?

= F(p,0) =1 <= V(p,0) =0 <= p=o0
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