Quantum Lecture 6

- Shannon information
- Quantum information
- Distance measures

Mikael Skoglund, Quantum Info

Shannon Entropy and Information

The Shannon entropy for a discrete variable X with alphabet $\mathcal X$ and pmf $p(x)=\Pr(X=x)$

$$H(X) = -\sum_{x \in \mathcal{X}} p(x) \log p(x)$$

average amount of uncertainty removed when observing the value of X = information gained when observing X

It holds that

$$0 \le H(X) \le \log |\mathcal{X}|$$

= 0 only if p(x) = 1 for some x

 $= \log |\mathcal{X}|$ only if $p(x) = 1/|\mathcal{X}|$

Join entropy of $X \in \mathcal{X}$ and $Y \in \mathcal{Y}$, $p(x, y) = \Pr(X = x, Y = y)$

$$H(X,Y) = -\sum_{x \in \mathcal{X}, y \in \mathcal{Y}} p(x,y) \log p(x,y)$$

Conditional entropy of Y given X = x

$$H(Y|X=x) = -\sum_{y \in \mathcal{Y}} p(y|x) \log p(y|x)$$

Conditional entropy of Y given X

$$H(Y|X) = \sum_{x \in \mathcal{X}} p(x)H(Y|X=x)$$

Chain rule

$$H(X,Y) = H(Y|X) + H(X)$$

Mikael Skoglund, Quantum Info

Relative entropy between the pmf's $p(\cdot)$ and $q(\cdot)$

$$D(p||q) = \sum_{x \in \mathcal{X}} p(x) \log \frac{p(x)}{q(x)}$$

 $D(p\|q) \geq 0 \text{ with } = 0 \text{ only if } p(x) = q(x)$

Mutual information

$$I(X;Y) = D(p(x,y)||p(x)p(y))$$
$$= \sum_{x \in \mathcal{X}, y \in \mathcal{Y}} p(x,y) \log \frac{p(x,y)}{p(x)p(y)}$$

information about X obtained when observing Y (and vice versa) $I(X;Y) \ge 0$ with = 0 only if p(x,y) = p(x)p(y)

Data processing inequality

$$X \to Y \to Z \implies I(X;Z) \le I(X;Y)$$

In particular,

$$I(X; f(Y)) \le I(X; Y)$$

 \Rightarrow no clever manipulation of the data can extract additional information that is not already present in the data itself

Mikael Skoglund, Quantum Info

Quantum Entropy and Information

An ensemble $\{p_i, |\psi_i\rangle\}$, and with $\rho = \sum_i p_i |\psi_i\rangle \langle \psi_i |$

The quantum or Von Neumann entropy of ρ

$$S(\rho) = -\text{Tr}(\rho \log \rho) = -\sum_{i} \lambda_i \log \lambda_i$$

where $\{\lambda_i\}$ are the eigenvalues of ρ

 $S(\rho) \ge 0$ with = 0 only if ρ is a pure state ($p_i = 1$ for some i) In a d-dimensional space ($d \le \infty$)

$$S(\rho) \le d$$

with = d only if $\{|\psi_i\rangle\}$ is an orthonormal set of size d and all p_i 's are equal, i.e. a ρ is a completely mixed state

The (quantum) relative entropy between two states ρ and σ

$$S(\rho \| \sigma) = \operatorname{Tr}(\rho \log \rho) - \operatorname{Tr}(\rho \log \sigma)$$

 $S(\rho \| \sigma) \geq 0$ with = 0 only if $\rho = \sigma$

For the composition of two systems \mathcal{A} and \mathcal{B} and a state $\rho^{AB} \in \mathcal{A} \otimes \mathcal{B}$, the joint entropy is $S(\rho^{AB})$

In the special case $\rho^{AB}=\rho\otimes\sigma$, we get

$$S(\rho^{AB}) = S(\rho) + S(\sigma)$$

c.f. H(X,Y) = H(X) + H(Y) iff X and Y independent

Mikael Skoglund, Quantum Info

In general, let $\rho_A = \text{Tr}_{\mathcal{B}}\rho^{AB}$ and $\rho_B = \text{Tr}_{\mathcal{A}}\rho^{AB}$ Conditional entropy

$$S(\rho_A|\rho_B) = S(\rho^{AB}) - S(\rho_B)$$

and mutual information

$$S(\rho_A;\rho_B) = S(\rho_A) + S(\rho_B) - S(\rho^{AB})$$

While $H(X|Y) \ge 0$, we have: $S(\rho_B|\rho_A) < 0$ if (and only if) ρ^{AB} is entangled (has rank > 1) It also holds that

$$S(\rho^{AB}) \le S(\rho_A) + S(\rho_B)$$

with = only if $\rho^{AB} = \rho_A \otimes \rho_B$. Furthermore

$$S(\rho^{AB}) \ge |S(\rho_A) - S(\rho_B)|$$

For three systems \mathcal{A} , \mathcal{B} , \mathcal{C} , we have

$$S(\rho_A) + S(\rho_B) \le S(\rho^{AC}) + S(\rho^{BC})$$
$$S(\rho^{ABC}) + S(\rho_B) \le S(\rho^{AB}) + S(\rho^{BC})$$

(where $\rho^{AB} = \text{Tr}_{\mathcal{C}} \rho^{ABC}$, etc.)

Implications,

conditioning reduces entropy, $S(\rho_A | \rho^{BC}) \leq S(\rho_A | \rho_B)$ adding a system increases information, $S(\rho_A; \rho_B) \leq S(\rho_A; \rho^{BC})$

Mikael Skoglund, Quantum Info

Quantum data processing inequality

For a composite system $\mathcal{A} \otimes \mathcal{B}$, if \mathcal{E} is a trace-preserving quantum operation on \mathcal{B} , mapping ρ^{AB} to σ^{AB} , then

$$S(\rho_A; \rho_B) \ge S(\sigma_A; \sigma_B)$$

Tracing out subsystems decreases relative entropy

$$S(\rho^A \| \sigma^A) \le S(\rho^{AB} \| \sigma^{AB})$$

Mikael Skoglund, Quantum Info

Consider a discrete rv $X \in \mathcal{X}$ with pmf p(x), and let $\{|e(x)\rangle\}$ be a basis for the $|\mathcal{X}|$ -dimensional Hilbert space \mathcal{H} . Then we can "embed" the classical variable X in the quantum system \mathcal{H} as

$$\sum_{x \in \mathcal{X}} p(x) |e(x)\rangle \langle e(x)|$$

Given a collection of $|\mathcal{X}|$ quantum states $\sigma(x)$, we can also define the mixed classical-quantum state

$$\sum_{x \in \mathcal{X}} p(x) |e(x)\rangle \langle e(x)| \otimes \sigma(x)$$

The joint (quantum) entropy of this classical-quantum state is

$$H(X) + \sum_{x \in \mathcal{X}} p(x) S(\sigma(x))$$

Mikael Skoglund, Quantum Info

Classical Distance Measures

Two classical pmf's, p(x) and q(x) for a variable $x \in \mathcal{X}$ L_1 distance,

$$||p(x) - q(x)|| = \sum_{x \in \mathcal{X}} |p(x) - q(x)|$$

For $A \subseteq \mathcal{X}$, let $p(A) = \sum_{x \in A} p(x)$ (and similarly for q), then

$$\max_{A \subseteq \mathcal{X}} (p(A) - q(A)) = \frac{1}{2} \| p(x) - q(x) \| = V(p,q)$$

the variational distance

Pinsker's inequality

$$D(p\|q) \geq \frac{1}{2\ln 2}\|p-q\|$$

For a discrete or continuous variable X, let $M(s)=E[\exp(sX)],$ then for all $s\geq 0$ we have the Chernoff bound

$$\Pr(X \ge a) \le e^{-sa} M(s)$$

According to the Neyman–Pearson lemma, the optimal test between two (discrete) distributions p and q is of the form

decide
$$p$$
 if $\ln \frac{p(x)}{q(x)} \ge \alpha$

Mikael Skoglund, Quantum Info

Thus,

$$\Pr(\operatorname{\mathsf{decide}} p | q \text{ is true}) = \Pr\left(\ln \frac{p(x)}{q(x)} \ge \alpha \Big| q\right) \le e^{-s\alpha} E\left[\left(\frac{p}{q}\right)^s | q\right]$$

With $\alpha=0,$ and choosing s=1/2

$$\Pr(\operatorname{\mathsf{decide}} p|q \text{ is true}) = \Pr(\operatorname{\mathsf{decide}} q|p \text{ is true}) \leq F(p,q)$$

where (assuming discrete variables)

$$F(p,q) = \sum_{x} \sqrt{p(x)q(x)}$$

is the fidelity of (p,q)

The entity $-\ln F(p,q)$ is called the Bhattacharyya distance

Distance Between Quantum States

The trace distance between ρ and σ

$$V(\rho,\sigma) = \frac{1}{2} \mathrm{Tr} |\rho - \sigma|$$

The fidelity of ρ and σ

$$F(\rho,\sigma) = \mathrm{Tr} \sqrt{\rho^{1/2} \sigma \rho^{1/2}}$$

Mikael Skoglund, Quantum Info

If ${\mathcal E}$ is trace-preserving, then

$$V(\mathcal{E}(\rho), \mathcal{E}(\sigma)) \le V(\rho, \sigma)$$

 and

$$F(\mathcal{E}(\rho), \mathcal{E}(\sigma)) \ge F(\rho, \sigma)$$

It always holds that

$$\begin{split} 1 - \sqrt{F(\rho,\sigma)} &\leq V(\rho,\sigma) \leq \sqrt{1 - (F(\rho,\sigma))^2} \\ \Rightarrow F(\rho,\sigma) = 1 \iff V(\rho,\sigma) = 0 \iff \rho = \sigma \end{split}$$