Quantum
 Lecture 6

- Shannon information
- Quantum information
- Distance measures

Shannon Entropy and Information

The Shannon entropy for a discrete variable X with alphabet \mathcal{X} and pmf $p(x)=\operatorname{Pr}(X=x)$

$$
H(X)=-\sum_{x \in \mathcal{X}} p(x) \log p(x)
$$

average amount of uncertainty removed when observing the value of $X=$ information gained when observing X

It holds that

$$
0 \leq H(X) \leq \log |\mathcal{X}|
$$

$=0$ only if $p(x)=1$ for some x
$=\log |\mathcal{X}|$ only if $p(x)=1 /|\mathcal{X}|$

Join entropy of $X \in \mathcal{X}$ and $Y \in \mathcal{Y}, p(x, y)=\operatorname{Pr}(X=x, Y=y)$

$$
H(X, Y)=-\sum_{x \in \mathcal{X}, y \in \mathcal{Y}} p(x, y) \log p(x, y)
$$

Conditional entropy of Y given $X=x$

$$
H(Y \mid X=x)=-\sum_{y \in \mathcal{Y}} p(y \mid x) \log p(y \mid x)
$$

Conditional entropy of Y given X

$$
H(Y \mid X)=\sum_{x \in \mathcal{X}} p(x) H(Y \mid X=x)
$$

Chain rule

$$
H(X, Y)=H(Y \mid X)+H(X)
$$

Relative entropy between the pmf's $p(\cdot)$ and $q(\cdot)$

$$
D(p \| q)=\sum_{x \in \mathcal{X}} p(x) \log \frac{p(x)}{q(x)}
$$

$D(p \| q) \geq 0$ with $=0$ only if $p(x)=q(x)$
Mutual information

$$
\begin{aligned}
I(X ; Y) & =D(p(x, y) \| p(x) p(y)) \\
& =\sum_{x \in \mathcal{X}, y \in \mathcal{Y}} p(x, y) \log \frac{p(x, y)}{p(x) p(y)}
\end{aligned}
$$

information about X obtained when observing Y (and vice versa)
$I(X ; Y) \geq 0$ with $=0$ only if $p(x, y)=p(x) p(y)$

Data processing inequality

$$
X \rightarrow Y \rightarrow Z \Longrightarrow I(X ; Z) \leq I(X ; Y)
$$

In particular,

$$
I(X ; f(Y)) \leq I(X ; Y)
$$

\Rightarrow no clever manipulation of the data can extract additional information that is not already present in the data itself

Quantum Entropy and Information

An ensemble $\left\{p_{i},\left|\psi_{i}\right\rangle\right\}$, and with $\rho=\sum_{i} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|$
The quantum or Von Neumann entropy of ρ

$$
S(\rho)=-\operatorname{Tr}(\rho \log \rho)=-\sum_{i} \lambda_{i} \log \lambda_{i}
$$

where $\left\{\lambda_{i}\right\}$ are the eigenvalues of ρ
$S(\rho) \geq 0$ with $=0$ only if ρ is a pure state ($p_{i}=1$ for some i)
In a d-dimensional space $(d \leq \infty)$

$$
S(\rho) \leq d
$$

with $=d$ only if $\left\{\left|\psi_{i}\right\rangle\right\}$ is an orthonormal set of size d and all p_{i} 's are equal, i.e. a ρ is a completely mixed state

The (quantum) relative entropy between two states ρ and σ

$$
S(\rho \| \sigma)=\operatorname{Tr}(\rho \log \rho)-\operatorname{Tr}(\rho \log \sigma)
$$

$S(\rho \| \sigma) \geq 0$ with $=0$ only if $\rho=\sigma$
For the composition of two systems \mathcal{A} and \mathcal{B} and a state $\rho^{A B} \in \mathcal{A} \otimes \mathcal{B}$, the joint entropy is $S\left(\rho^{A B}\right)$
In the special case $\rho^{A B}=\rho \otimes \sigma$, we get

$$
S\left(\rho^{A B}\right)=S(\rho)+S(\sigma)
$$

c.f. $H(X, Y)=H(X)+H(Y)$ iff X and Y independent

In general, let $\rho_{A}=\operatorname{Tr}_{\mathcal{B}} \rho^{A B}$ and $\rho_{B}=\operatorname{Tr}_{\mathcal{A}} \rho^{A B}$
Conditional entropy

$$
S\left(\rho_{A} \mid \rho_{B}\right)=S\left(\rho^{A B}\right)-S\left(\rho_{B}\right)
$$

and mutual information

$$
S\left(\rho_{A} ; \rho_{B}\right)=S\left(\rho_{A}\right)+S\left(\rho_{B}\right)-S\left(\rho^{A B}\right)
$$

While $H(X \mid Y) \geq 0$, we have:
$S\left(\rho_{B} \mid \rho_{A}\right)<0$ if (and only if) $\rho^{A B}$ is entangled (has rank >1)
It also holds that

$$
S\left(\rho^{A B}\right) \leq S\left(\rho_{A}\right)+S\left(\rho_{B}\right)
$$

with $=$ only if $\rho^{A B}=\rho_{A} \otimes \rho_{B}$. Furthermore

$$
S\left(\rho^{A B}\right) \geq\left|S\left(\rho_{A}\right)-S\left(\rho_{B}\right)\right|
$$

For three systems $\mathcal{A}, \mathcal{B}, \mathcal{C}$, we have

$$
\begin{aligned}
S\left(\rho_{A}\right)+S\left(\rho_{B}\right) & \leq S\left(\rho^{A C}\right)+S\left(\rho^{B C}\right) \\
S\left(\rho^{A B C}\right)+S\left(\rho_{B}\right) & \leq S\left(\rho^{A B}\right)+S\left(\rho^{B C}\right)
\end{aligned}
$$

(where $\rho^{A B}=\operatorname{Tr}_{\mathcal{C}} \rho^{A B C}$, etc.)
Implications,
conditioning reduces entropy, $S\left(\rho_{A} \mid \rho^{B C}\right) \leq S\left(\rho_{A} \mid \rho_{B}\right)$
adding a system increases information, $S\left(\rho_{A} ; \rho_{B}\right) \leq S\left(\rho_{A} ; \rho^{B C}\right)$

Quantum data processing inequality For a composite system $\mathcal{A} \otimes \mathcal{B}$, if \mathcal{E} is a trace-preserving quantum operation on \mathcal{B}, mapping $\rho^{A B}$ to $\sigma^{A B}$, then

$$
S\left(\rho_{A} ; \rho_{B}\right) \geq S\left(\sigma_{A} ; \sigma_{B}\right)
$$

Tracing out subsystems decreases relative entropy

$$
S\left(\rho^{A} \| \sigma^{A}\right) \leq S\left(\rho^{A B} \| \sigma^{A B}\right)
$$

Consider a discrete $\mathrm{rv} X \in \mathcal{X}$ with pmf $p(x)$, and let $\{|e(x)\rangle\}$ be a basis for the $|\mathcal{X}|$-dimensional Hilbert space \mathcal{H}. Then we can "embed" the classical variable X in the quantum system \mathcal{H} as

$$
\sum_{x \in \mathcal{X}} p(x)|e(x)\rangle\langle e(x)|
$$

Given a collection of $|\mathcal{X}|$ quantum states $\sigma(x)$, we can also define the mixed classical-quantum state

$$
\sum_{x \in \mathcal{X}} p(x)|e(x)\rangle\langle e(x)| \otimes \sigma(x)
$$

The joint (quantum) entropy of this classical-quantum state is

$$
H(X)+\sum_{x \in \mathcal{X}} p(x) S(\sigma(x))
$$

Classical Distance Measures

Two classical pmf's, $p(x)$ and $q(x)$ for a variable $x \in \mathcal{X}$ L_{1} distance,

$$
\|p(x)-q(x)\|=\sum_{x \in \mathcal{X}}|p(x)-q(x)|
$$

For $A \subseteq \mathcal{X}$, let $p(A)=\sum_{x \in A} p(x)$ (and similarly for q), then

$$
\max _{A \subseteq \mathcal{X}}(p(A)-q(A))=\frac{1}{2}\|p(x)-q(x)\|=V(p, q)
$$

the variational distance

Pinsker's inequality

$$
D(p \| q) \geq \frac{1}{2 \ln 2}\|p-q\|
$$

For a discrete or continuous variable X, let $M(s)=E[\exp (s X)]$, then for all $s \geq 0$ we have the Chernoff bound

$$
\operatorname{Pr}(X \geq a) \leq e^{-s a} M(s)
$$

According to the Neyman-Pearson lemma, the optimal test between two (discrete) distributions p and q is of the form

$$
\text { decide } p \text { if } \ln \frac{p(x)}{q(x)} \geq \alpha
$$

Thus,
$\operatorname{Pr}($ decide $p \mid q$ is true $)=\operatorname{Pr}\left(\left.\ln \frac{p(x)}{q(x)} \geq \alpha \right\rvert\, q\right) \leq e^{-s \alpha} E\left[\left.\left(\frac{p}{q}\right)^{s} \right\rvert\, q\right]$
With $\alpha=0$, and choosing $s=1 / 2$
$\operatorname{Pr}($ decide $p \mid q$ is true $)=\operatorname{Pr}($ decide $q \mid p$ is true $) \leq F(p, q)$
where (assuming discrete variables)

$$
F(p, q)=\sum_{x} \sqrt{p(x) q(x)}
$$

is the fidelity of (p, q)
The entity $-\ln F(p, q)$ is called the Bhattacharyya distance

Distance Between Quantum States

The trace distance between ρ and σ

$$
V(\rho, \sigma)=\frac{1}{2} \operatorname{Tr}|\rho-\sigma|
$$

The fidelity of ρ and σ

$$
F(\rho, \sigma)=\operatorname{Tr} \sqrt{\rho^{1 / 2} \sigma \rho^{1 / 2}}
$$

If \mathcal{E} is trace-preserving, then

$$
V(\mathcal{E}(\rho), \mathcal{E}(\sigma)) \leq V(\rho, \sigma)
$$

and

$$
F(\mathcal{E}(\rho), \mathcal{E}(\sigma)) \geq F(\rho, \sigma)
$$

It always holds that

$$
\begin{aligned}
1-\sqrt{F(\rho, \sigma)} \leq V(\rho, \sigma) \leq \sqrt{1-(F(\rho, \sigma))^{2}} \\
\Rightarrow F(\rho, \sigma)=1 \Longleftrightarrow V(\rho, \sigma)=0 \Longleftrightarrow \rho=\sigma
\end{aligned}
$$

