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The Holevo Bound

Assume a discrete random variable X € & with pmf p(x) is
embedded on a set of states p,, as the ensemble {p(x), p,.}

A measurement described by {M,,})_; is performed, resulting in
Ye{l,...,N}

The Holevo bound states that

I(X;Y) < S(p) = Y p(x)S(pa)

rzeX

over all possible {M,,}, and with

p=> p@)pa

reX
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The entity

X(p(x), pa) = S(p) = Y p()S(pz)

reX

is the Holevo information of the ensemble {p(x), ps}

Note that the joint entropy of the classical-quantum state

U—ZP )‘®pw

TeX

(where {e(x)} is a basis) is H(p) + > cx P(x)S(pz), hence
x(p(z), pz) = H(p) + S(p) — 5(0)

= mutual information between the classical and the quantum state

Mikael Skoglund, Quantum Info 3/15

Fano's Inequality

For discrete random variables, consider
X = variable of interest
Y = observed variable
X = f(Y) estimate of X based on Y’

With P, = Pr(X # X) and h(z) = —zlogz — (1 — z) log(1 — z),
we have Fano's inequality

h(P.) + P. log(|X| — 1) > H(X|Y)

Hence, in the quantum setting:
For any measurement that tries to conclude X as X from p,

h(P.) + P log(|X| = 1) > H(X) - S(p) + > _ p(x)
reX
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Typical Sequences

For a sequence =" = (z1,...,x,) with letters in X and a pmf p(x)
on X, let

1
T(x") = —— 1 i
(z™) - E@ og p(x;)
For fixed n and € > 0, let
T = {2 . |T(2™) — H(p)| < e}

be the set of e-typical sequences (of length n, given p)
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By the (weak) LLN, if X™ ~ []. p(x;) then for any € > 0 there is
an N such that for all n > N

Pr(X" e (W) >1—¢

We also have
‘7;(71)| < gn(H(p)+e)

and there is an N such that forn > N

|7;(n)| > (1— 5)2n(H(p)—6)
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Compression

We can enumerate all elements of 7}(n) using numbers from
[1: M,] with M, > [2nH(P)+e)]

Assume X" ~ [, p(x;)

Compression code: Observe X™ = z"; if 2™ € 7;(71) then produce
i € [1: M,] corresponding to x™; if z" ¢ 7™ then declare error

For any £ > 0, there is an N such that for all n > N, Pr(error) < ¢
as long as

1 1
—log M,, > H(p) +e+ —
n n
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On the other hand, from Fano's inequality

log M, 1 1
08 “+=>H(p) — —log M,
n

Pr(error)
n n

Hence, for large n, choosing n~!log M,, slightly bigger than H(p)
Is the best compression we can accomplish
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Preservation of Entanglement

For discrete random variables X and Y with join pmf p(x,y), the
mutual information 7(X;Y) measures the degree of mutual
dependence, or (nonlinear) correlation

In quantum systems, two states are dependent on each-other if
they are entangled

Consider a mixed state p in H with purification [¢)) in H ® R,
i.e. p = Trg|v) (1| for some space R

R can model the unknown environment; if we had access to both
H and R then we would be considering the pure state |¢) (1]

The system H is entangled with the environment R, as
characterized by the entangled state |¢)) € HQ R
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Assume £ is applied to p in H, resulting in the state o in H ® R.
Then, the entanglement fidelity of (p,&) is defined as

F(p, &) = (Plofy)
F(p,&) does not dependon R, 0< F(p,&) <1

We can easily verify that

F(p,&) = (F(|¢){¥l,0))’

where F(|1) (1], o) is the regular (static) fidelity between the pure
state |¢) (1| and o (remember F(p, o) = Tr\/pt/20pt/2)

F(p,&) measures how well entanglement is preserved by &£

Let {E£;} be the operation elements of £, then we also have

F(p,€) = 3 [Te(pEy)
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Typical Subspaces

Any density operator p associated with a system H has an
eigen-decomposition p = > . \i|z;) (z]

Since ) . A\; = 1, we can interpret this representation for p as an
information source; |x;) is emitted with probability p(x;) = \;

Let p" = p®---Qp, |2") = |xiy -+ Ti,) = |24y) @ -+ @ |z5,) and
H'=H®- - @H (n times)

The states p™ and |z™) correspond to “using the information
source” (p,H) a number of n independent times

With T'(Jz")) = —n~ 1 S0 _ log p(x;,,) let
T = {|2") [T (ja™) = S(p)| < €}

and define the typical subspace

S = span T\ = span{|z") : |z") € T}
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Let Pg(n) denote the projection operator from H" to 55(")
For any € > 0O there is an N such that forn > N
Te(PM™pn) > 1 —¢
Furthermore, for any n and ¢
TrPg(”) < on(S(p)+e))

and for any € > 0 there is an N such that for n > N

TP > (1 — £)275(0)=2)

Mikael Skoglund, Quantum Info 12/15



Compression

CTL ’D’I'l.
/) /)/ pl/
nlogd nS(p) nlog d
qubits qubits qubits

C™ maps states in H™ to states in a space G,, of dimension D,

D™ maps states in G,, back to states in H"

Assume |v) is a purification of p” in H" @ R, and let E” = D" o C"
Let 0" be the resulting state in H" ® R

The corresponding entanglement fidelity is

F(p", ") = (dla"[y)
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A compression scheme

Select G, O S\ = TvP™ < D,

Set C" = P\ and D" = I (identity)

Then for any € > 0 there is an N such that forn > N

F(p",€") > [Tr(p" PS> > 1 —e* > 1 —2¢

It also holds that
Ty ps(n) < on(S(p)+e))

Thus F'(p", ™) > 1 — 2¢ as long as

1
ElogDn > S(p) +¢€
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Converse: It can be shown that, if

1
lim —log D, < S(p)

n—oo N,
then F'(p",S8™) — 0 for any projector S™
If H is d-dimensional, H™ is d"-dimensional; i.e. it takes nlogd
qubits to describe a state in ‘H"

Then the best compression we can have is from log d qubits to
S(p) (< logd) qubits, per use of the source (p, H),

with preserved entanglement F(p",8™) — 1

Since 1 — \/F(p,0) < V(p,0) <+/1— 2 we could also
use V(p,o) =27 1Tr|p — o| as fldel|ty metrlc,
F(p,0) > 1 < V(p,o) =0
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