Quantum

Lecture 7

- The Holevo bound
- Typical sequences and subspaces
- Compression

Mikael Skoglund, Quantum Info

The Holevo Bound

Assume a discrete random variable $X \in \mathcal{X}$ with pmf p(x) is embedded on a set of states ρ_x , as the ensemble $\{p(x), \rho_x\}$

A measurement described by $\{M_n\}_{n=1}^N$ is performed, resulting in $Y \in \{1,\ldots,N\}$

The Holevo bound states that

$$I(X;Y) \le S(\rho) - \sum_{x \in \mathcal{X}} p(x)S(\rho_x)$$

over all possible $\{M_n\}$, and with

$$\rho = \sum_{x \in \mathcal{X}} p(x) \rho_x$$

The entity

$$\chi(p(x), \rho_x) = S(\rho) - \sum_{x \in \mathcal{X}} p(x)S(\rho_x)$$

is the Holevo information of the ensemble $\{p(x), \rho_x\}$ Note that the joint entropy of the classical-quantum state

$$\sigma = \sum_{x \in \mathcal{X}} p(x) |e(x)\rangle \langle e(x)| \otimes \rho_x$$

(where $\{e(x)\}$ is a basis) is $H(p) + \sum_{x \in \mathcal{X}} p(x)S(\rho_x)$, hence

$$\chi(p(x), \rho_x) = H(p) + S(\rho) - S(\sigma)$$

= mutual information between the classical and the quantum state

Mikael Skoglund, Quantum Info

Fano's Inequality

For discrete random variables, consider

X =variable of interest

Y = observed variable

 $\hat{X} = f(Y)$ estimate of X based on Y

With $P_e = \Pr(\hat{X} \neq X)$ and $h(x) = -x \log x - (1-x) \log(1-x)$, we have Fano's inequality

$$h(P_e) + P_e \log(|\mathcal{X}| - 1) \ge H(X|Y)$$

Hence, in the quantum setting:

For any measurement that tries to conclude X as \hat{X} from ρ ,

 $h(P_e) + P_e \log(|\mathcal{X}| - 1) \ge H(X) - S(\rho) + \sum_{x \in \mathcal{X}} p(x)S(\rho_x)$

Typical Sequences

For a sequence $x^n = (x_1, \ldots, x_n)$ with letters in \mathcal{X} and a pmf p(x) on \mathcal{X} , let

$$T(x^n) = -\frac{1}{n} \sum_{i} \log p(x_i)$$

For fixed n and $\varepsilon > 0$, let

$$\mathcal{T}_{\varepsilon}^{(n)} = \{x^n : |T(x^n) - H(p)| \le \varepsilon\}$$

be the set of ε -typical sequences (of length n, given p)

Mikael Skoglund, Quantum Info

By the (weak) LLN, if $X^n \sim \prod_i p(x_i)$ then for any $\varepsilon > 0$ there is an N such that for all n > N

$$\Pr(X^n \in \mathcal{T}_{\varepsilon}^{(n)}) > 1 - \varepsilon$$

We also have

$$|\mathcal{T}_{\varepsilon}^{(n)}| \le 2^{n(H(p)+\varepsilon)}$$

and there is an N such that for $n \geq N$

$$|\mathcal{T}_{\varepsilon}^{(n)}| \ge (1-\varepsilon)2^{n(H(p)-\varepsilon)}$$

Compression

We can enumerate all elements of $\mathcal{T}_{\varepsilon}^{(n)}$ using numbers from $[1:M_n]$ with $M_n \geq \lceil 2^{n(H(p)+\varepsilon)} \rceil$

Assume $X^n \sim \prod_i p(x_i)$

Compression code: Observe $X^n = x^n$; if $x^n \in \mathcal{T}_{\varepsilon}^{(n)}$ then produce $i \in [1:M_n]$ corresponding to x^n ; if $x^n \notin \mathcal{T}_{\varepsilon}^{(n)}$ then declare error

For any $\varepsilon > 0$, there is an N such that for all n > N, $\Pr(\text{error}) \leq \varepsilon$ as long as

$$\frac{1}{n}\log M_n \ge H(p) + \varepsilon + \frac{1}{n}$$

Mikael Skoglund, Quantum Info

7/15

On the other hand, from Fano's inequality

$$\Pr(\text{error})\frac{\log M_n}{n} + \frac{1}{n} \ge H(p) - \frac{1}{n}\log M_n$$

Hence, for large n, choosing $n^{-1}\log M_n$ slightly bigger than H(p) is the best compression we can accomplish

Preservation of Entanglement

For discrete random variables X and Y with join pmf p(x, y), the mutual information I(X;Y) measures the degree of mutual dependence, or (nonlinear) correlation

In quantum systems, two states are dependent on each-other if they are entangled

Consider a mixed state ρ in \mathcal{H} with purification $|\psi\rangle$ in $\mathcal{H} \otimes \mathcal{R}$, i.e. $\rho = \text{Tr}_{\mathcal{R}} |\psi\rangle \langle \psi|$ for some space \mathcal{R}

 \mathcal{R} can model the unknown environment; if we had access to both \mathcal{H} and \mathcal{R} then we would be considering the pure state $|\psi\rangle\langle\psi|$

The system \mathcal{H} is entangled with the environment \mathcal{R} , as characterized by the entangled state $|\psi\rangle \in \mathcal{H} \otimes \mathcal{R}$

Mikael Skoglund, Quantum Info

Assume \mathcal{E} is applied to ρ in \mathcal{H} , resulting in the state σ in $\mathcal{H} \otimes \mathcal{R}$. Then, the entanglement fidelity of (ρ, \mathcal{E}) is defined as

$$F(\rho, \mathcal{E}) = \langle \psi | \sigma | \psi \rangle$$

 $F(\rho, \mathcal{E})$ does not depend on \mathcal{R} , $0 \leq F(\rho, \mathcal{E}) \leq 1$ We can easily verify that

$$F(\rho, \mathcal{E}) = (F(|\psi\rangle\langle\psi|, \sigma))^2$$

where $F(|\psi\rangle\langle\psi|,\sigma)$ is the regular (static) fidelity between the pure state $|\psi\rangle\langle\psi|$ and σ (remember $F(\rho,\sigma) = \text{Tr}\sqrt{\rho^{1/2}\sigma\rho^{1/2}}$) $F(\rho,\mathcal{E})$ measures how well entanglement is preserved by \mathcal{E} Let $\{E_i\}$ be the operation elements of \mathcal{E} , then we also have

$$F(\rho, \mathcal{E}) = \sum_{i} |\operatorname{Tr}(\rho E_i)|^2$$

Typical Subspaces

Any density operator ρ associated with a system \mathcal{H} has an eigen-decomposition $\rho = \sum_i \lambda_i |x_i\rangle \langle x_i|$

Since $\sum_i \lambda_i = 1$, we can interpret this representation for ρ as an information source; $|x_i\rangle$ is emitted with probability $p(x_i) = \lambda_i$

Let $\rho^n = \rho \otimes \cdots \otimes \rho$, $|x^n\rangle = |x_{i_1} \cdots x_{i_n}\rangle = |x_{i_1}\rangle \otimes \cdots \otimes |x_{i_n}\rangle$ and $\mathcal{H}^n = \mathcal{H} \otimes \cdots \otimes \mathcal{H}$ (*n* times)

The states ρ^n and $|x^n\rangle$ correspond to "using the information source" (ρ, \mathcal{H}) a number of n independent times

With
$$T(|x^n\rangle) = -n^{-1} \sum_{m=1}^n \log p(x_{i_m})$$
 let
$$\mathcal{T}_{\varepsilon}^{(n)} = \{|x^n\rangle : |T(|x^n\rangle) - S(\rho)| \le \varepsilon$$

and define the typical subspace

$$\mathcal{S}^{(n)}_arepsilon = {
m span}\,\mathcal{T}^{(n)}_arepsilon = {
m span}\{|x^n
angle: |x^n
angle\in\mathcal{T}^{(n)}_arepsilon\}$$

Mikael Skoglund, Quantum Info

11/15

}

Let $P_{\varepsilon}^{(n)}$ denote the projection operator from \mathcal{H}^n to $\mathcal{S}_{\varepsilon}^{(n)}$ For any $\varepsilon > 0$ there is an N such that for n > N

$$\operatorname{Tr}(P_{\varepsilon}^{(n)}\rho^n) \ge 1 - \varepsilon$$

Furthermore, for any n and ε

$$\operatorname{Tr} P_{\varepsilon}^{(n)} \leq 2^{n(S(\rho) + \varepsilon))}$$

and for any $\varepsilon > 0$ there is an N such that for n > N

$$\operatorname{Tr} P_{\varepsilon}^{(n)} \ge (1-\varepsilon)2^{n(S(\rho)-\varepsilon))}$$

Compression

 \mathcal{C}^n maps states in \mathcal{H}^n to states in a space \mathcal{G}_n of dimension D_n \mathcal{D}^n maps states in \mathcal{G}_n back to states in \mathcal{H}^n Assume $|\psi\rangle$ is a purification of ρ^n in $\mathcal{H}^n \otimes \mathcal{R}$, and let $\mathcal{E}^n = \mathcal{D}^n \circ \mathcal{C}^n$ Let σ^n be the resulting state in $\mathcal{H}^n \otimes \mathcal{R}$ The corresponding entanglement fidelity is

$$F(\rho^n, \mathcal{E}^n) = \langle \psi | \sigma^n | \psi \rangle$$

Mikael Skoglund, Quantum Info

A compression scheme

Select $\mathcal{G}_n \supset \mathcal{S}_{\varepsilon}^{(n)} \Rightarrow \operatorname{Tr} P_{\varepsilon}^{(n)} \leq D_n$ Set $\mathcal{C}^n = P_{\varepsilon}^{(n)}$ and $\mathcal{D}^n = I$ (identity) Then for any $\varepsilon > 0$ there is an N such that for n > N

$$F(\rho^n, \mathcal{E}^n) \ge |\operatorname{Tr}(\rho^n P_{\varepsilon}^{(n)})|^2 \ge |1 - \varepsilon|^2 \ge 1 - 2\varepsilon$$

It also holds that

$$\operatorname{Tr} P_{\varepsilon}^{(n)} \le 2^{n(S(\rho) + \varepsilon))}$$

Thus $F(\rho^n, \mathcal{E}^n) > 1 - 2\varepsilon$ as long as

$$\frac{1}{n}\log D_n > S(\rho) + \varepsilon$$

Converse: It can be shown that, if

$$\lim_{n \to \infty} \frac{1}{n} \log D_n < S(\rho)$$

then $F(
ho^n, \mathcal{S}^n)
ightarrow 0$ for any projector \mathcal{S}^n

If \mathcal{H} is *d*-dimensional, \mathcal{H}^n is d^n -dimensional; i.e. it takes $n \log d$ qubits to describe a state in \mathcal{H}^n

Then the best compression we can have is from $\log d$ qubits to $S(\rho)$ ($\leq \log d$) qubits, per use of the source (ρ, \mathcal{H}) ,

with preserved entanglement $F(\rho^n, \mathcal{S}^n) \to 1$

Since $1 - \sqrt{F(\rho, \sigma)} \leq V(\rho, \sigma) \leq \sqrt{1 - (F(\rho, \sigma))^2}$ we could also use $V(\rho, \sigma) = 2^{-1} \text{Tr} |\rho - \sigma|$ as fidelity metric,

 $F(\rho,\sigma) \to 1 \iff V(\rho,\sigma) \to 0$

Mikael Skoglund, Quantum Info