Quantum

Lecture 8

e Shannon's channel capacity
e (lassical information over quantum channel

e Quantum information over quantum channel
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Shannon’s Channel Capacity

A discrete memoryless channel (DMC) with (finite) input and

output alphabets X and ), respectively, is described by a
conditional pmf p(y|x)

For a fixed n, the channel takes input sequences X € X" and
maps them to output sequences Y" € J"

For X™ = 2™ the random sequence Y" is described by

n

p(y"z") = | | p(yile:)

=1
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Define an (M, n) block channel code for a DMC by
® An indexset Zpy = {1,..., M}
® An encoder mapping £ : Zpy — X™. The set

{z" 2™ =E(i), i € Iy}

of codewords is called the codebook
© A decoder mapping D : V" — Ty,
The rate of the code is

_ log M
- n

R

[bits per channel use]
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An information symbol [ is chosen uniformly from € 7,
If I =i, the codeword z™(i) = £(i) is sent through the channel
The received sequence Y™ is decoded as D(Y") € Iy,

The average error probability is

M
1
(n) _ 1 _ T
P =1 —Z§:1:Pr(D(Y ) = i|I =)
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A rate R is achievable if there exists a sequence of (M,,,n) codes
such that

1
liminf — log M,, > R

n—oo M

and Pe(n)—>Oasn—>oo
The capacity C' is the maximum achievable rate

Shannon's coding theorem: The capacity of a DMC p(y|x) is

C =maxI(Y;X)
p(z)

= maX ZC (@) p<y‘x)
2 2 pllelp(e) og =" 0 i s

reEX yey

(over pmf's p(z) on X)
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Classical Information over a Quantum Channel

Consider a quantum channel (noisy quantum operation) N/
mapping states in H to states in G

An (M, n) code for conveying a random I € 7, is described by
@ An encoder &,, mapping I € I, to pl") = pgk) Q- pék)
with p( ) € HO* and for n = k¢

® A decoder D,,, mapping o(" /\/'k( ) ®/\/'k(pék)) to
T, where NF = @k

A rate R is achievable if there exists a sequence (&, D) such that

1
liminf — log M,, > R

n—oo m,

and P = Pr(D,(c™) £ I) — 0

The capacity is the maximum achievable rate
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The encoder and decoder agree on an ensemble {p(a:),pgf)} and a
classical codebook {z(7)} of size M,

For I =1 the encoder transmits the joint state

n)y- k k

The decoder D,, is described by a measurement {Kz}f\i’i with
POVM elements E; = K} K;, such that D,,(¢(™) = ' when the
outcome is 7’

Note that M
pe( ) — 1 — ; Tr(Ei<./\/’kPi1)(i) ® - ®Nkpi(ve)(i)))

Also note that the coding happens over ¢ independent uses of the
product channel N, i.e. n = k¢ uses of \V in total

The equivalent DMC is p(y|x) = Tr(Ey/\/'kpggk))
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Holevo information of a channel

The Holevo information of the channel N is

X(WN) = max x(p(z), N (pz))

PCQ

over {p(x), p.} in the classical-quantum state
poq = Y p(@)le(@))(e(x)| © N (ps)

That is
X(N) = max(H (p) + S(o) — S(pcq))

over {p(x), pz}, where o = > p(z)N(pz)
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The Holevo—Schumacher—Westmoreland coding theorem

The capacity C' for sending classical information over the channel
N is
C = lim (NF)
= lim —
k—o00 kX

Even if we use the channel N' a number n independent times, this
is not a single-letter expression for the capacity
C.f. the classical case, where we can use the single-letter expression
max, . [ (X;Y) instead of
. 1
lim max —I(X";Y™")
n—00 p(z™) N

for memoryless channels
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The Holevo information is in general not additive,

i.e. x(M ® Na) # x(N1) + x(N2)

Additivity holds for entanglement-breaking channels: i.e., channels
N :H — G such that if p is entangled in H ® H' then (N ® I)p is
not entangled

When additivity holds, we have a single-letter expression for
capacity

C =xWN)

achieved by setting £ = 1 and ¢ = n. However, in general sending
entangled states p(¥) over ¢ uses of N'* gives higher rates
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Preservation of Entanglement over a Quantum Channel

Suppose we have a state |¢)) in H ® R, but we can only access H

Assume p = |¢) (] is pure in H ® R (by purification), but
entangled

With an encoder that operates on H over N : A — B, we wish to
preserve p and the entanglement with R, according to:

@& mapspeHRR as (E, @ 1I)p to A®"
@® The channel A is used n independent times
© The received state is o™ = N"((&, ® I)p)
® D, maps 0™ tow e H' @ R
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Assume d,, = dimH = dim H’

A rate @) is achievable if there exist a sequence (&,,D,,) such that

1
liminf — logd,, > @

n—oo n,

and V(p,w) =1/2Tr|p — w| — 0
(or equivalently the entanglement fidelity — 1)

The capacity C' is the maximum achievable rate

Mikael Skoglund, Quantum Info 12/15



Remember the no cloning theorem: For any Hilbert space H there
is no unitary operation U such that for [¢), [¢) € H,

U(l) @ [9)) = [¥) @ |)

Still, we have a positive capacity for quantum communication: The
capacity is

C = lim lQ(/\/’f)

k—oco k

where Q(N) is the coherent information of a channel N/
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For a state p € A ® B, we had the conditional entropy

S(palps) = S(p) — S(pB)

with p4 = Trgp and pp = Trap

Since S(p|pg) < 0 when p is entangled, we also define the
coherent information (for entangled states p)

Q(pa)ps) = —S(plps)

The coherent information of channel A then is
QN) = max Q(oar)oB)

over pe A B and foro = (N @ Ip with N : A — A
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As for classical over quantum, the expression for C' is in general

not single-letter, since in general Q(N7 @ N3) # Q(N7) + Q(N>)

Additivity holds for degradable channels, i.e. channels A/ that can
be decomposed as

N(p) = N1(Na(p))

Thus, for a degradable channel A/, we have C' = Q(N)
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