
Quantum
Lecture 8

• Shannon’s channel capacity

• Classical information over quantum channel

• Quantum information over quantum channel
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Shannon’s Channel Capacity

A discrete memoryless channel (DMC) with (finite) input and
output alphabets X and Y, respectively, is described by a
conditional pmf p(y|x)
For a fixed n, the channel takes input sequences Xn ∈ X n and
maps them to output sequences Y n ∈ Yn

For Xn = xn the random sequence Y n is described by

p(yn|xn) =
n∏

i=1

p(yi|xi)
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Define an (M,n) block channel code for a DMC by

1 An index set IM = {1, . . . ,M}
2 An encoder mapping E : IM → X n. The set

{xn : xn = E(i), i ∈ IM}

of codewords is called the codebook

3 A decoder mapping D : Yn → IM
The rate of the code is

R =
logM

n
[bits per channel use]
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An information symbol I is chosen uniformly from ∈ IM
If I = i, the codeword xn(i) = E(i) is sent through the channel

The received sequence Y n is decoded as D(Y n) ∈ IM
The average error probability is

P (n)
e = 1− 1

M

M∑

i=1

Pr(D(Y n) = i|I = i)
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A rate R is achievable if there exists a sequence of (Mn, n) codes
such that

lim inf
n→∞

1

n
logMn ≥ R

and P
(n)
e → 0 as n→∞

The capacity C is the maximum achievable rate

Shannon’s coding theorem: The capacity of a DMC p(y|x) is

C = max
p(x)

I(Y ;X)

= max
p(x)




∑

x∈X

∑

y∈Y
p(y|x)p(x) log p(y|x)∑

x∈X p(y|x)p(x)





(over pmf’s p(x) on X )
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Classical Information over a Quantum Channel

Consider a quantum channel (noisy quantum operation) N
mapping states in H to states in G
An (M,n) code for conveying a random I ∈ IMn is described by

1 An encoder En, mapping I ∈ IMn to ρ(n) = ρ
(k)
1 ⊗ · · · ⊗ ρ

(k)
`

with ρ
(k)
j ∈ H⊗k and for n = k`

2 A decoder Dn, mapping σ(n) = N k(ρ
(k)
1 )⊗ · · · ⊗ N k(ρ

(k)
` ) to

IMn , where N k = N⊗k
A rate R is achievable if there exists a sequence (En,Dn) such that

lim inf
n→∞

1

n
logMn ≥ R

and P
(n)
e = Pr(Dn(σ(n)) 6= I)→ 0

The capacity is the maximum achievable rate
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The encoder and decoder agree on an ensemble {p(x), ρ(k)x } and a
classical codebook {x`(i)} of size Mn

For I = i the encoder transmits the joint state

ρ(n)(i) = ρ
(k)
x1(i)
⊗ · · · ⊗ ρ(k)x`(i)

The decoder Dn is described by a measurement {Ki}Mn
i=1, with

POVM elements Ei = K∗iKi, such that Dn(σ(n)) = i′ when the
outcome is i′

Note that

P (n)
e = 1−

Mn∑

i=1

Tr(Ei(N kρ
(k)
x1(i)
⊗ · · · ⊗ N kρ

(k)
x`(i)

))

Also note that the coding happens over ` independent uses of the
product channel N k, i.e. n = k` uses of N in total

The equivalent DMC is p(y|x) = Tr(EyN kρ
(k)
x )
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Holevo information of a channel

The Holevo information of the channel N is

χ(N ) = max
ρCQ

χ(p(x),N (ρx))

over {p(x), ρx} in the classical-quantum state

ρCQ =
∑

x

p(x)|e(x)〉〈e(x)| ⊗ N (ρx)

That is
χ(N ) = max(H(p) + S(σ)− S(ρCQ))

over {p(x), ρx}, where σ =
∑
p(x)N (ρx)
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The Holevo–Schumacher–Westmoreland coding theorem

The capacity C for sending classical information over the channel
N is

C = lim
k→∞

1

k
χ(N k)

Even if we use the channel N a number n independent times, this
is not a single-letter expression for the capacity

C.f. the classical case, where we can use the single-letter expression
maxp(x) I(X;Y ) instead of

lim
n→∞

max
p(xn)

1

n
I(Xn;Y n)

for memoryless channels
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The Holevo information is in general not additive,
i.e. χ(N1 ⊗N2) 6= χ(N1) + χ(N2)

Additivity holds for entanglement-breaking channels: i.e., channels
N : H → G such that if ρ is entangled in H⊗H′ then (N ⊗ I)ρ is
not entangled

When additivity holds, we have a single-letter expression for
capacity

C = χ(N )

achieved by setting k = 1 and ` = n. However, in general sending
entangled states ρ(k) over ` uses of N k gives higher rates
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Preservation of Entanglement over a Quantum Channel

Suppose we have a state |ψ〉 in H⊗R, but we can only access H
Assume ρ = |ψ〉〈ψ| is pure in H⊗R (by purification), but
entangled

With an encoder that operates on H over N : A → B, we wish to
preserve ρ and the entanglement with R, according to:

1 En maps ρ ∈ H ⊗R as (En ⊗ I)ρ to A⊗n
2 The channel N is used n independent times

3 The received state is σ(n) = N n((En ⊗ I)ρ)
4 Dn maps σ(n) to ω ∈ H′ ⊗R
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Assume dn = dimH = dimH′

A rate Q is achievable if there exist a sequence (En,Dn) such that

lim inf
n→∞

1

n
log dn ≥ Q

and V (ρ, ω) = 1/2Tr|ρ− ω| → 0
(or equivalently the entanglement fidelity → 1)

The capacity C is the maximum achievable rate
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Remember the no cloning theorem: For any Hilbert space H there
is no unitary operation U such that for |ψ〉, |ψ〉′ ∈ H,

U(|ψ〉 ⊗ |ψ〉′) = |ψ〉 ⊗ |ψ〉

Still, we have a positive capacity for quantum communication: The
capacity is

C = lim
k→∞

1

k
Q(N k)

where Q(N ) is the coherent information of a channel N
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For a state ρ ∈ A⊗ B, we had the conditional entropy

S(ρA|ρB) = S(ρ)− S(ρB)

with ρA = TrBρ and ρB = TrAρ

Since S(ρ|ρB) < 0 when ρ is entangled, we also define the
coherent information (for entangled states ρ)

Q(ρA〉ρB) = −S(ρ|ρB)

The coherent information of channel N then is

Q(N ) = max
ρ
Q(σA′〉σB)

over ρ ∈ A⊗ B and for σ = (N ⊗ I)ρ with N : A → A′
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As for classical over quantum, the expression for C is in general
not single-letter, since in general Q(N1 ⊗N2) 6= Q(N1) +Q(N2)

Additivity holds for degradable channels, i.e. channels N that can
be decomposed as

N (ρ) = N1(N2(ρ))

Thus, for a degradable channel N , we have C = Q(N )
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