Quantum

Lecture 9

- Classical linear codes
- Quantum codes

Mikael Skoglund, Quantum Info

Block Codes

An (n, M) block (channel) code over a field GF(q) is a set

$$\mathcal{C} = \{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_M\}$$

of *codewords*, with $\mathbf{x}_m \in \mathrm{GF}^n(q)$

 ${\rm GF}(q)=$ "set of $q<\infty$ objects that can be added, subtracted, divided and multiplied to stay inside the set"

- $GF(2) = \{0, 1\}$ modulo 2
- $GF(p) = \{0, 1, \dots, p-1\}$ modulo p, for a prime number p
- GF(q) for a non-prime q; polynomials...

Hamming distance: For $\mathbf{x}, \mathbf{y} \in \mathrm{GF}^n(q)$,

 $d(\mathbf{x}, \mathbf{y}) =$ number of components where \mathbf{x} and \mathbf{y} differ Hamming weight: For $\mathbf{x} \in \mathrm{GF}^n(q)$,

$$w(\mathbf{x}) = d(\mathbf{x}, \mathbf{0})$$

where $\mathbf{0} = (0, 0, \dots, 0)$

Minimum distance of a code C:

$$d_{\min} = d = \min \left\{ d(\mathbf{x}, \mathbf{y}) : \mathbf{x} \neq \mathbf{y}; \ \mathbf{x}, \mathbf{y} \in \mathcal{C} \right\}$$

Mikael Skoglund, Quantum Info

A code \mathcal{C} is linear if

$$\mathbf{x}, \mathbf{y} \in \mathcal{C} \implies \mathbf{x} + \mathbf{y} \in \mathcal{C}, \quad \mathbf{x} \in \mathcal{C}, \alpha \in \mathrm{GF}(q) \implies \alpha \cdot \mathbf{x} \in \mathcal{C}$$

where + and \cdot are addition and multiplication in GF(q)

A linear code C forms a linear space $\subset \operatorname{GF}^n(q)$ of dimension k < n \Rightarrow exists a basis $\{\mathbf{g}_m\}_{m=1}^k$, $\mathbf{g}_m \in C$, that spans C, i.e.,

$$\mathbf{x} \in \mathcal{C} \iff \mathbf{x} = \sum_{m=1}^{k} u_m \mathbf{g}_m$$

for some $\mathbf{u} = (u_1, \dots, u_k) \in \mathrm{GF}^k(q)$, and hence $M = |\mathcal{C}| = q^k$

Let $\{\mathbf{g}_m\}_{m=1}^k$ define the rows of a $k \times n$ matrix $\mathbf{G} \implies$

$$\mathbf{x} \in \mathcal{C} \iff \mathbf{x} = \mathbf{u}\mathbf{G}$$

for some $\mathbf{u} \in \mathrm{GF}^k(q)$

G is called a generator matrix for the code

Any G with rows that form a maximal set of linearly independent codewords is a valid generator matrix \Rightarrow a code C can have different G's

An (n, M) linear code of dimension $k = \log_q M$ and with minimum distance d is called an [n, k, d] code

Mikael Skoglund, Quantum Info

Let r = n - k and let the rows of the $r \times n$ matrix \mathbf{H} span

$$\mathcal{C}^{\perp} = \{ \mathbf{v} : \mathbf{v} \cdot \mathbf{x} = 0, \ \mathbf{x} \in \mathcal{C} \}, \ \mathbf{v} \cdot \mathbf{x} = \sum_{m=1}^{n} v_m x_m \text{ in } \mathrm{GF}(q)$$

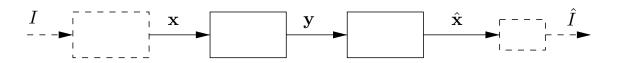
Any such \mathbf{H} is called a parity check matrix for \mathcal{C}

•
$$\mathbf{G}\mathbf{H}^T = \mathbf{0} \quad (= \{0\}^{k imes r}); \quad \mathbf{x} \in \mathcal{C} \iff \mathbf{H}\mathbf{x}^T = \mathbf{0}^T$$

• **H** generates the *dual code* \mathcal{C}^{\perp}

C linear $\implies d_{\min} = \min_{\mathbf{x} \in C} w(\mathbf{x}) = \min$ number of linearly dependent columns of \mathbf{H}

Coding over a DMC



Information variable: $I \in \mathcal{I}_M = \{1, \dots, M\}$ (p(i) = 1/M)

Encoding: $I = i \rightarrow \mathbf{x}_i = \alpha(i) \in \mathcal{C}$

• C linear with $M = q^k \implies$ any $i \in \mathcal{I}_M$ corresponds to some $\mathbf{u}_i \in \mathrm{GF}^k(q)$ and $\mathbf{x}_i = \mathbf{u}_i \mathbf{G}$

A DMC $(\mathcal{X}, p(y|x), \mathcal{Y})$ with $\mathcal{X} = GF(q)$, used $n \text{ times} \to \mathbf{y} \in \mathcal{Y}^n$

• potentially $\mathcal{Y} \neq \mathcal{X}$, but let's assume $\mathcal{Y} = \mathcal{X} = \mathrm{GF}(q)$

Decoding: $\hat{\mathbf{x}} = \beta(\mathbf{y}) \in \mathcal{C} (\rightarrow \hat{I})$ Probability of error: $P_e = \Pr(\hat{\mathbf{x}} \neq \mathbf{x})$

Mikael Skoglund, Quantum Info

Decoding x transmitted \implies y = x + e where e = (e_1, \ldots, e_n) is the *error vector* corresponding to y

The nearest neighbor (NN) decoder

$$\hat{\mathbf{x}} = \mathbf{x}'$$
 if $\mathbf{x}' = \arg\min_{\mathbf{x}\in\mathcal{C}} d(\mathbf{y},\mathbf{x})$

• Equiprobable $I \in \mathcal{I}_M$ and a symmetric DMC such that $\Pr(e_m = 0) = 1 - p > 1/2$ and $\Pr(e_m \neq 0) = p/(q-1)$,

 $\mathsf{NN} \iff maximum \ likelihood \iff \min P_e$

With NN decoding, a code with $d_{\min} = d$ can correct

$$t = \left\lfloor \frac{d-1}{2} \right\rfloor$$

errors; as long as $w(\mathbf{e}) \leq t$ the codeword \mathbf{x} will *always* be recovered correctly from \mathbf{y}

Bounds

• Hamming (or sphere-packing): For a code with $t = \lfloor (d_{\min} - 1)/2 \rfloor$,

$$\sum_{i=0}^{t} \binom{n}{i} (q-1)^i \le M^{-1}q^n$$

- equality \implies *perfect* code \implies can correct all e of weight $\leq t$ and no others
- Hamming codes are perfect linear binary codes with t = 1
- Gilbert–Varshamov: There exists an [n, k, d] code over GF(q) with $r = n k \le \rho$ and $d \ge \delta$ provided that

$$\sum_{i=0}^{\delta-2} \binom{n-1}{i} (q-1)^i < q^{\rho}$$

Mikael Skoglund, Quantum Info

9/16

• Singleton: For any [n, k, d] code,

$$r = n - k \ge d - 1$$

- $r = d 1 \implies$ maximum distance separable (MDS)
- For MDS codes:
 - Any r columns in H are linearly independent
 - Any k columns in \mathbf{G} are linearly independent

Two codes C and D of length n over GF(q) are equivalent if there exist n permutations π_1, \ldots, π_n of field elements and a permutation σ of coordinate positions such that

$$(x_1,\ldots,x_n)\in\mathcal{C}\implies \sigma\{(\pi_1(x_1),\ldots,\pi_n(x_n))\}\in\mathcal{D}$$

• In particular, swapping the same two coordinates in all codewords gives an equivalent code

For a linear code, (G, H) can be manipulated (add, subtract, swap rows, swap columns) into an equivalent linear code in systematic or standard form

$$\mathbf{G}_{\mathsf{sys}} = \begin{bmatrix} \mathbf{I}_k | \mathbf{A} \end{bmatrix} \qquad \mathbf{H}_{\mathsf{sys}} = \begin{bmatrix} -\mathbf{A}^T | \mathbf{I}_r \end{bmatrix}$$

For MDS codes: no swapping of columns needed

Mikael Skoglund, Quantum Info

Cosets

For each $\mathbf{y} \in \mathrm{GF}^n(q)$, the coset of a linear code \mathcal{C} (over $\mathrm{GF}(q)$) corresponding to \mathbf{y} is the set

$$\mathcal{C}(\mathbf{y}) = \mathbf{y} + \mathcal{C} = \{\mathbf{y} + \mathbf{x} : \mathbf{x} \in \mathcal{C}\}$$

Every $\mathbf{z} \in \mathrm{GF}^n(q)$ belongs to $\mathcal{C}(\mathbf{y})$ for some \mathbf{y}

Two cosets $C(\mathbf{y}_1)$ and $C(\mathbf{y}_2)$ are either equal or disjoint

Thus, given \mathcal{C} we can partition $\mathrm{GF}^n(q)$ into $q^n/|\mathcal{C}|$ different cosets

Quantum Error Correcting Codes

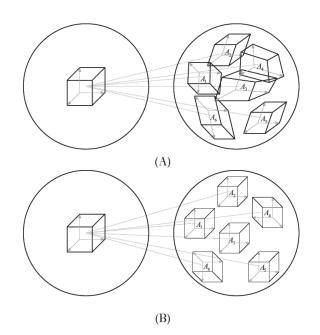


Figure 10.5. The packing of Hilbert spaces in quantum coding: (A) bad code, with non-orthogonal, deformed resultant spaces, and (B) good code, with orthogonal (distinguishable), undeformed spaces.

Mikael Skoglund, Quantum Info

A code is a subspace C in a Hilbert space H

Let $P_{\mathcal{C}}$ denote the projection on the code, $|\psi\rangle \in \mathcal{H} \Rightarrow P_{\mathcal{C}}|\psi\rangle \in \mathcal{C}$

A channel is represented by a quantum operation \mathcal{E} from \mathcal{H} to \mathcal{H}' , $\operatorname{Tr} \mathcal{E} = 1$, with operation elements $\{E_i\}$ called errors

A decoder is a mapping $\mathcal{D}:\mathcal{H}'\to\mathcal{H}$

The decoder is error-correcting if for $|\psi\rangle\in \mathcal{C}$, $ho=|\psi\rangle\langle\psi|$,

$$\mathcal{D}(\mathcal{E}(\rho)) = \gamma \rho$$

for some $\gamma \in \mathbb{C}$

Error-correction conditions (finite dimensions)

There exists an error-correcting decoder iff

$$P_{\mathcal{C}}E_i^*E_jP_{\mathcal{C}}=\gamma_{ij}P_{\mathcal{C}}$$

for $\gamma_{ij} \in \mathbb{C}$ picked from a Hermitian matrix

If the condition is fulfilled, $\{E_i\}$ is a set of correctable errors

If the error-correction conditions are fulfilled for $\{E_i\}$ then they are also fulfilled for $\{F_i\}$, with

$$F_j = \sum_i c_{ij} E_i$$

for any $c_{ij} \in \mathbb{C}$

Mikael Skoglund, Quantum Info

General error correction (finite dimensions)

Given C, assume $\{E_i\}$ satisfies $P_C E_i^* E_j P_C = \gamma_{ij} P_C$ The matrix $\gamma = (\gamma_{ij})$ is Hermitian $\Rightarrow \gamma = U^* DU$ for U unitary and $D = (d_{ij})$ diagonal

For
$$U = (u_{ij})$$
 let $F_j = \sum_i u_{ij} E_i \Rightarrow P_{\mathcal{C}} F_k^* F_{\ell} P_{\mathcal{C}} = d_{k\ell} P_{\mathcal{C}}$

 $G_k = F_k P_c$ can be written as $G_k = U_k \sqrt{G_k^* G_k}$ where U_k is unitary (polar decomposition), thus $F_k P_c = \sqrt{d_{kk}} U_k P_c$

Define the projector $P_k = U_k P_C U_k^* \Rightarrow$ corresponding subspaces for different k orthogonal

Detection: Measure $\{P_k\}$ Correction: Apply U_k^* Decoder: $\mathcal{D}(\sigma) = \sum_k U_k^* P_k \sigma P_k U_k, \ \sigma = \mathcal{E}(\rho)$ $\rho = |\psi\rangle\langle\psi| \text{ for } |\psi\rangle \in \mathcal{C} \Rightarrow \mathcal{D}(\sigma) = \sum_k d_{kk}\rho$