
Quantum
Lecture 9

• Classical linear codes

• Quantum codes
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Block Codes

An (n,M) block (channel) code over a field GF(q) is a set

C = {x1,x2, . . . ,xM}

of codewords, with xm ∈ GFn(q)

GF(q) = “set of q <∞ objects that can be added, subtracted,
divided and multiplied to stay inside the set”

• GF(2) = {0, 1} modulo 2

• GF(p) = {0, 1, . . . , p− 1} modulo p, for a prime number p

• GF(q) for a non-prime q; polynomials. . .
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Hamming distance: For x,y ∈ GFn(q),

d(x,y) = number of components where x and y differ

Hamming weight: For x ∈ GFn(q),

w(x) = d(x,0)

where 0 = (0, 0, . . . , 0)

Minimum distance of a code C:

dmin = d = min {d(x,y) : x 6= y; x,y ∈ C}
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A code C is linear if

x,y ∈ C =⇒ x + y ∈ C, x ∈ C, α ∈ GF(q) =⇒ α · x ∈ C

where + and · are addition and multiplication in GF(q)

A linear code C forms a linear space ⊂ GFn(q) of dimension k < n
⇒ exists a basis {gm}km=1, gm ∈ C, that spans C, i.e.,

x ∈ C ⇐⇒ x =
k∑

m=1

umgm

for some u = (u1, . . . , uk) ∈ GFk(q), and hence M = |C| = qk
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Let {gm}km=1 define the rows of a k × n matrix G =⇒

x ∈ C ⇐⇒ x = uG

for some u ∈ GFk(q)

G is called a generator matrix for the code

Any G with rows that form a maximal set of linearly independent
codewords is a valid generator matrix ⇒ a code C can have
different G’s

An (n,M) linear code of dimension k = logqM and with
minimum distance d is called an [n, k, d] code
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Let r = n− k and let the rows of the r × n matrix H span

C⊥ = {v : v · x = 0, x ∈ C}, v · x =

n∑

m=1

vmxm in GF(q)

Any such H is called a parity check matrix for C
• GHT = 0 (= {0}k×r); x ∈ C ⇐⇒ HxT = 0T

• H generates the dual code C⊥

C linear =⇒ dmin = minx∈C w(x) = minimal number of linearly
dependent columns of H
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Coding over a DMC

I x y x̂ Î

Information variable: I ∈ IM = {1, . . . ,M} (p(i) = 1/M)

Encoding: I = i→ xi = α(i) ∈ C
• C linear with M = qk =⇒ any i ∈ IM corresponds to some
ui ∈ GFk(q) and xi = uiG

A DMC (X , p(y|x),Y) with X = GF(q), used n times → y ∈ Yn
• potentially Y 6= X , but let’s assume Y = X = GF(q)

Decoding: x̂ = β(y) ∈ C (→ Î)

Probability of error: Pe = Pr(x̂ 6= x)
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Decoding x transmitted =⇒ y = x + e where e = (e1, . . . , en) is
the error vector corresponding to y

The nearest neighbor (NN) decoder

x̂ = x′ if x′ = arg min
x∈C

d(y,x)

• Equiprobable I ∈ IM and a symmetric DMC such that
Pr(em = 0) = 1− p > 1/2 and Pr(em 6= 0) = p/(q − 1),

NN ⇐⇒ maximum likelihood ⇐⇒ minimum Pe

With NN decoding, a code with dmin = d can correct

t =

⌊
d− 1

2

⌋

errors; as long as w(e) ≤ t the codeword x will always be
recovered correctly from y
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Bounds

• Hamming (or sphere-packing): For a code with
t = b(dmin − 1)/2c,

t∑

i=0

(
n

i

)
(q − 1)i ≤M−1qn

• equality =⇒ perfect code =⇒ can correct all e of weight
≤ t and no others

• Hamming codes are perfect linear binary codes with t = 1

• Gilbert–Varshamov: There exists an [n, k, d] code over GF(q)
with r = n− k ≤ ρ and d ≥ δ provided that

δ−2∑

i=0

(
n− 1

i

)
(q − 1)i < qρ
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• Singleton: For any [n, k, d] code,

r = n− k ≥ d− 1

• r = d− 1 =⇒ maximum distance separable (MDS)

• For MDS codes:
• Any r columns in H are linearly independent
• Any k columns in G are linearly independent
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Two codes C and D of length n over GF(q) are equivalent if there
exist n permutations π1, . . . , πn of field elements and a
permutation σ of coordinate positions such that

(x1, . . . , xn) ∈ C =⇒ σ
{

(π1(x1), . . . , πn(xn))
}
∈ D

• In particular, swapping the same two coordinates in all
codewords gives an equivalent code

For a linear code, (G,H) can be manipulated (add, subtract, swap
rows, swap columns) into an equivalent linear code in systematic or
standard form

Gsys =
[
Ik
∣∣A
]

Hsys =
[
−AT

∣∣Ir
]

For MDS codes: no swapping of columns needed
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Cosets

For each y ∈ GFn(q), the coset of a linear code C (over GF(q))
corresponding to y is the set

C(y) = y + C = {y + x : x ∈ C}

Every z ∈ GFn(q) belongs to C(y) for some y

Two cosets C(y1) and C(y2) are either equal or disjoint

Thus, given C we can partition GFn(q) into qn/|C| different cosets
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Quantum Error Correcting Codes
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A code is a subspace C in a Hilbert space H
Let PC denote the projection on the code, |ψ〉 ∈ H ⇒ PC |ψ〉 ∈ C
A channel is represented by a quantum operation E from H to H′,
Tr E = 1, with operation elements {Ei} called errors

A decoder is a mapping D : H′ → H
The decoder is error-correcting if for |ψ〉 ∈ C, ρ = |ψ〉〈ψ|,

D(E(ρ)) = γρ

for some γ ∈ C
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Error-correction conditions (finite dimensions)

There exists an error-correcting decoder iff

PCE∗i EjPC = γijPC

for γij ∈ C picked from a Hermitian matrix

If the condition is fulfilled, {Ei} is a set of correctable errors

If the error-correction conditions are fulfilled for {Ei} then they are
also fulfilled for {Fi}, with

Fj =
∑

i

cijEi

for any cij ∈ C
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General error correction (finite dimensions)

Given C, assume {Ei} satisfies PCE∗i EjPC = γijPC

The matrix γ = (γij) is Hermitian ⇒ γ = U∗DU for U unitary
and D = (dij) diagonal

For U = (uij) let Fj =
∑

i uijEi ⇒ PCF ∗kF`PC = dk`PC

Gk = FkPC can be written as Gk = Uk
√
G∗kGk where Uk is

unitary (polar decomposition), thus FkPC =
√
dkkUkPC

Define the projector Pk = UkPCU∗k ⇒ corresponding subspaces for
different k orthogonal

Detection: Measure {Pk}
Correction: Apply U∗k

Decoder: D(σ) =
∑

k U
∗
kPkσPkUk, σ = E(ρ)

ρ = |ψ〉〈ψ| for |ψ〉 ∈ C ⇒ D(σ) =
∑

k dkkρ
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