Quantum

Lecture 9

e (Classical linear codes

e Quantum codes
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Block Codes

An (n, M) block (channel) code over a field GF(q) is a set

C:{Xl,XQ,...,XM}

of codewords, with x,, € GF"(q)

GF(q) = "set of ¢ < 0o objects that can be added, subtracted,
divided and multiplied to stay inside the set”

e GF(2) ={0,1} modulo 2
e GF(p) ={0,1,...,p— 1} modulo p, for a prime number p

o GF(q) for a non-prime ¢; polynomials. . .
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Hamming distance: For x,y € GF"(q),
d(x,y) = number of components where x and y differ
Hamming weight: For x € GF"(q),
w(x) = d(x,0)

where 0 = (0,0, ...,0)

Minimum distance of a code C:

dmin = d =min {d(x,y) : x #y; x,y € C}
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A code C is linear if
x,y€(C = x+y€l, x€CaeGF(q) = a-x€(

where + and - are addition and multiplication in GF(q)

A linear code C forms a linear space C GF"(q) of dimension k < n
= exists a basis {gn}* _,, g € C, that spans C, i.e.,

k
x el «— Xzzumgm

m=1

for some u = (uy,...,u) € GF¥(q), and hence M = |C| = ¢*
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Let {g,,}* _, define the rows of a k x n matrix G =
xcl <= x=uG

for some u € GF*(q)
G is called a generator matrix for the code

Any G with rows that form a maximal set of linearly independent
codewords is a valid generator matrix = a code C can have

different G's

An (n, M) linear code of dimension k = log, M and with
minimum distance d is called an [n, k, d] code
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Let » = n — k and let the rows of the r X n matrix H span

Ct={v:v-x=0, xeC}, v-x= vaazm in GF(q)
m=1
Any such H is called a parity check matrix for C
e GHT =0 (={0}*"); xeC <= Hx! =07
o H generates the dual code C*+

C linear = dpin = mingee w(x) = minimal number of linearly
dependent columns of H
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Coding over a DMC

_______

Information variable: I € Zpy ={1,..., M} (p(i) = 1/M)
Encoding: I =i — x; = a(i) € C
e C linear with M = ¢* = any i € Z;; corresponds to some
w; € GF*(g) and x; = u;G

A DMC (X, p(y|z),Y) with X = GF(q), used n times —y € "
e potentially ) # X, but let's assume ) = X = GF(q)

Decoding: X = f(y) € C (= I)
Probability of error: P, = Pr(x # x)
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Decoding x transmitted = y = x + e where e = (e1,...,¢e,) is
the error vector corresponding to y

The nearest neighbor (NN) decoder

/ f /: : d
if x'=argmind(y,x)

X=X

e Equiprobable I € Zj; and a symmetric DMC such that
Pr(e,, =0) =1—p>1/2 and Pr(e,, #0) =p/(q—1),
NN <= maximum likelihood <= minimum P,
With NN decoding, a code with d,i, = d can correct

. d—1
L2
errors; as long as w(e) <t the codeword x will always be
recovered correctly from y
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Bounds

e Hamming (or sphere-packing): For a code with
t = [(dmin — 1)/2],

e equality = perfect code = can correct all e of weight
< t and no others
e Hamming codes are perfect linear binary codes with ¢t =1

o Gilbert—Varshamov: There exists an [n, k, d] code over GF(q)
with r =n — k < p and d > ¢ provided that

gf(nzl)m—lf<qp

Mikael Skoglund, Quantum Info 9/16

o Singleton: For any [n,k,d] code,
r=n—k>d-—1

o r=d—1 = maximum distance separable (MDS)
e For MDS codes:

e Any r columns in H are linearly independent
e Any k columns in G are linearly independent
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Two codes C and D of length n over GF(q) are equivalent if there
exist n permutations 7y, ..., T, of field elements and a
permutation o of coordinate positions such that

(z1,...,25) €C = of{(mi(z1),...,mn(zn))} €D

e In particular, swapping the same two coordinates in all
codewords gives an equivalent code

For a linear code, (G, H) can be manipulated (add, subtract, swap
rows, swap columns) into an equivalent linear code in systematic or
standard form

Gon= [JA]  Hyy = [~ ATJL]

For MDS codes: no swapping of columns needed
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Cosets

For each y € GF"(q), the coset of a linear code C (over GF(q))
corresponding to y is the set

Cly)=y+C={y+x:x€eC(C}

Every z € GF"(q) belongs to C(y) for some y
Two cosets C(y1) and C(y2) are either equal or disjoint

Thus, given C we can partition GF"(q) into ¢"/|C| different cosets
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Quantum Error Correcting Codes

®)

Figure 10.5. The packing of Hilbert spaces in quantum coding: (A) bad code, with non-orthogonal, deformed
resultant spaces, and (B) good code, with orthogonal (distinguishable), undeformed spaces.
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A code is a subspace C in a Hilbert space H
Let P denote the projection on the code, |¢) € H = Pely) € C

A channel is represented by a quantum operation £ from H to H’,
Tr & = 1, with operation elements {F;} called errors

A decoder is a mapping D : H' — H
The decoder is error-correcting if for 1)) € C, p = ) (3],

D(E(p)) =p

for some v € C

Mikael Skoglund, Quantum Info 14/16



Error-correction conditions (finite dimensions)

There exists an error-correcting decoder iff
PeEE;jPe = vi;Fe

for ;5 € C picked from a Hermitian matrix

If the condition is fulfilled, {E£;} is a set of correctable errors

If the error-correction conditions are fulfilled for { E;} then they are
also fulfilled for {F;}, with

Fj = ZcijEi

for any ¢;; € C
Mikael Skoglund, Quantum Info 15/16

General error correction (finite dimensions)
Given C, assume {E;} satisfies PcEE;Pe = ;¢

The matrix v = (v;5) is Hermitian = v = U*DU for U unitary
and D = (d;;) diagonal

For U = (Uzj) let Fj = Zz ’LLz'jEZ' = PcF];kFgPC = dy FPe

Gy = I, Pc can be written as G, = Ui/ G G), where Uy, is
unitary (polar decomposition), thus FyPe = /dgUr FPe

Define the projector P, = Uy PcU; = corresponding subspaces for
different k& orthogonal

Detection: Measure {P}}
Correction: Apply U;;
Decoder: D(o) =, Ui Pyo P Uy, 0 = E(p)
p =) (] for ) € C = D(0) = )_) drrp
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